• 제목/요약/키워드: 주가 예측 모델

검색결과 1,789건 처리시간 0.033초

조건부 랜덤 포레스트 기반의 설명 가능한 일사량 예측 (Explainable Solar Irradiation Forecasting Based on Conditional Random Forests)

  • 문지훈;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.323-326
    • /
    • 2020
  • 태양광 발전은 이산화탄소 배출로 인한 기후 변화에 대응하는 주요 수단으로 인식되어 수요와 필요성이 급격하게 증가하고 있다. 최적의 태양광 발전 시스템의 운영을 위해서는 정교한 전력수요 및 태양광 발전량 예측 모델이 요구되며, 온도 및 일사량은 태양광 발전량 예측 모델의 필수적인 입력 변수이다. 하지만, 한국 기상청의 동네예보는 일사량에 관한 예측값을 제공하지 않아 정교한 태양광 발전량 예측 모델을 구축하는 것은 어렵다. 이를 위해 일사량 예측 기법에 관한 많은 연구사례가 보고되고 있지만, 다수의 연구들은 충분한 데이터 셋을 이용하여 일사량 예측 모델을 개발하였다. 초기 태양광 발전 시스템 운영을 위해서는 불충분한 데이터 셋을 이용한 예측 모델 개발이 필요하나 이에 대한 사례는 불충분하다. 본 논문은 실제 태양광 발전 시스템에서 수집된 불충분한 데이터 셋을 이용한 단기 일사량 예측 기법을 제안한다. 먼저, 기상청 동네예보의 다양한 기상 요인들을 이용하여 일사량 예측 모델을 위한 입력 변수를 구성한다. 다음으로, 조건부 랜덤 포레스트를 이용하여 일사량 예측 모델을 구성하며, 설명 가능한 일사량 예측뿐만 아니라 더욱더 많은 데이터 셋을 학습하기 위해 시계열 교차검증을 수행한다. 실험 결과, 제안한 기법은 다른 예측 기법들보다 높은 예측 정확도를 보일 뿐만 아니라 설명 가능한 예측 결과를 제시할 수 있음을 보여준다.

하드디스크의 잔존 수명 예측에 1D CNN-LSTM 을 이용한 모델 적용 연구 (A Study on Applying a Model Using 1D CNN-LSTM to the RUL Prediction of HDD)

  • 서양진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.978-981
    • /
    • 2020
  • 제품이나 부품의 잔존 수명을 정확하게 예측할 수 있다면 고장이나 중단으로 인한 손실을 방지하는 것이 가능해질 것이다. 제품의 잔존 수명은 시계열 데이터 분석을 통해 예측될 수 있으며, 최근에는 딥러닝을 이용한 잔존 수명 예측 연구가 활발하게 진행되고 있다. 본 연구에서 우리는 컴퓨터 기반 시스템의 주요 고장 요소가 되고 있는 하드디스크의 잔존 수명을 예측하는 문제에 1D CNN-LSTM 을 이용한 모델을 적용하고, RMSE 와 R-Square 값을 이용해 적용한 모델의 성능을 평가하였다.

딥러닝 기법을 이용한 주가지수 예측 프로그램 (Stock price index prediction program using deep learning techniques)

  • 고정국;이기영;손익준;권예림
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.525-526
    • /
    • 2021
  • 최근 금리 인하로 주식을 비롯한 다양한 금융상품에 대한 투자가 급증하고 있다. 주식 시장에서 가격은 시장의 모든 정보들이 반영된 결과로서 주식의 가격 변동을 이용하여 가격 패턴을 찾아낸 후 다양한 분석기법으로 주가 지수를 예측하는 연구들이 진행되어 왔다. 그러나 주식 시장은 기업의 내·외부 요인들의 상호관계가 주가 형성에 많은 영향을 주는 가격 결정 메카니즘으로 인해 주가의 변동을 설명할 수 없는 경우가 자주 발생하고 있다. 따라서 주식 시장 예측을 위해서는 시장 내부의 변화와 외부 사건들을 함께 반영할 수 있는 방법이 필요하다. 본 논문에서는 뉴스 기사들에 대한 감성 분석과 주가지수의 시계열 데이터를 딥러닝 예측 모델을 통해 주식 시장의 추세를 예측할 수 있는 주가지수 예측 프로그램을 제안한다.

  • PDF

SAINT 기반의 소프트웨어 결함 예측 (Software Defect Prediction Based on SAINT)

  • ;주은정;이정화;류덕산
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.236-242
    • /
    • 2024
  • 소프트웨어 결함 예측(SDP)은 오류가 발생할 가능성이 있는 모듈을 사전에 식별하여 소프트웨어 개발의 효율을 높이고 있다. SDP에서의 주과제는 예측 성능을 향상시키는것에 있다. 최근 연구에서는 딥러닝 기법이 소프트웨어 결함 예측(SDP) 분야에 적용되어 있으며, 특히 구조화된 데이터를 분석하는 데 뛰어난 성능을 보이고 있는 SAINT 모델이 주목받고 있다. 본 연구는 SAINT 모델을 다른 주요 모델(XGBoost, Random Forest, CatBoost)과 비교하여 SDP에 적용 가능한 최신 딥러닝 기법을 조사하였다. SAINT는 일관되게 우수한 성능을 보여주며 결함 예측 정확도 향상에 효과적임을 입증하였다. 이 연구 결과는 실용적인 소프트웨어 개발 상황에서 결함 예측 방법론을 발전시킬 수 있는 SAINT의 잠재력을 강조하며, 교차 검증, 특성 스케일링, 비교 분석 등을 포함한 철저한 방법론을 통해 수행되었다.

ACT-R 모델을 이용한 메뉴 인터페이스의 사용성 평가 : 수행도 예측을 중심으로 (The Usability Evaluation of Menu Interfaces using ACT-R : Focusing on Performance Prediction)

  • 조성식;차연주;명노해
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.1064-1068
    • /
    • 2009
  • 인지모델(Cognitive Model)에 의한 사용성 평가는 실제 실험에 의한 방법에 비해 시간, 노력, 비용을 절감할 수 있다. 여러 인지모델 중 ACT-R(Adaptive Control of Thought Rational)은 인간의 모든 인지과정을 상세하게 묘사할 수 있어 다른 모델보다 정확히 인간의 과제 수행을 정량적으로 예측할 수 있다. 그러나 ACT-R 모델을 수립하기 위해서는 인간의 지각, 주의, 기억 인출 등의 처리 과정과 행동 선택 및 수행에 필요한 과제 수행 규칙을 매우 상세하게 분석 및 기술해야 하기 때문에, GUI(Graphic User Interface) 환경에서 운용되는 메뉴 인터페이스와 같이 다양한 시각적 정보의 처리가 요구되는 과제에 대한 모델을 수립하는데는 많은 시간과 노력이 요구된다. 이에 본 연구에서는 GUI 환경에서 전문가 수준의 과제 수행을 예측할 수 있는 간략화한 ACT-R 모델 수립 방안을 제안하고, 이를 이용하여 상용 통계 분석 소프트웨어의 과제 수행도를 예측하였다. 그 결과 실제 실험을 통한 측정 결과와 간략화한 ACT-R 모델의 예측 결과가 잘 일치하였으며 본 연구에서 제시한 간략화한 ACTR 모델이 메뉴 인터페이스의 사용성 평가에 효율적으로 적용될 수 있음을 확인하였다.

  • PDF

AI 기법을 활용한 제주도 남서부 해역의 입자추적 예측 연구 (AI-Based Particle Position Prediction Near Southwestern Area of Jeju Island)

  • 하승윤;김희준;곽경일;김영택;윤한삼
    • 한국해안·해양공학회논문집
    • /
    • 제34권3호
    • /
    • pp.72-81
    • /
    • 2022
  • 본 연구는 제주도 남서부 해역의 표류체 이동 예측을 위해 2020년 8월 제주도 남서부 5개 지점에서 투하된 표층 뜰개 위치자료와 수치모델 예측자료를 학습자료로 이용한 인공지능 기반 입자추적 모델 5개를 구축하였다. 구축된 AI 기법은 기계학습 3종(Extra Trees, LightGBM, Support Vector Machine)과 딥러닝 2종(DNN, RBFN)이다. 또한 해수유동 수치모델 입자추적 예측자료 1종 및 AI 기법 입자추적 예측자료 5종을 표층 뜰개 관측자료와 비교하여 각 예측모델별 예측 정확도를 평가하였다. 6종 모델의 예측 정확도를 평가하기 위해, 5개 정점에 대한 3개 스킬량(MAE, RMSE, NCLS)의 평균값을 비교 검토하였다. 최종적인 결과로서 딥러닝 DNN 모델이 MAE, RMSE, NCLS에서 다른 모델보다 가장 우수하게 나타났다.

신경회로망을 이용한 일별 KOSPI 이동 방향 예측에 의한 ETF 매매 (Predicting The Direction of The Daily KOSPI Movement Using Neural Networks For ETF Trades)

  • 황희수
    • 한국융합학회논문지
    • /
    • 제10권4호
    • /
    • pp.1-6
    • /
    • 2019
  • 신경회로망은 과거 데이터로부터 유용한 정보를 추출해서 주가지수의 이동 방향을 예측하는데 사용되어 왔다. 주가 지수의 상승 또는 하락 방향을 예측하는 기존 연구는 지수의 작은 변화에도 상승이나 하락을 예측하므로 이를 기반으로 지수 연동 ETF를 매매 하면 손실이 발생할 가능성이 높다. 본 논문에서는 ETF 매매 손실을 줄이고 매매 당 일정 이상의 수익을 내기 위한 일별 KOrea composite S0tock Price Index (KOSPI)의 이동 방향을 예측하는 신경회로망 모델을 제안한다. 제안된 모델은 이동 방향 예측을 위해 전일 대비 지수 변동률이 상승(변동률${\geq}{\alpha}$), 하락(변동률${\leq}-{\alpha}$)과 중립($-{\alpha}$<변동률<${\alpha}$)을 표시하는 출력을 갖는다. 예측이 상승이면 레버리지 Exchange Traded Fund (ETF)를, 하락이면 인버스 ETF를 매수한다. 본 논문에서 구현된 신경회로망 모델 중 PNN1의 Hit ratio (HR)은 학습에서 0.720, 평가에서 0.616이다. 평가용 데이터로 ETF 매매를 시뮬레이션하면 수익률은 8.39 ~ 16.32 %를 보인다. 또한 제안된 이동 방향 예측 신경회로망 모델이 주가지수 예측 신경회로망 모델 보다 ETF 매매 성공률과 수익률에서 더 우수하다.

가중치 손실 함수를 가지는 순환 컨볼루션 신경망 기반 주가 예측 (A Stock Price Prediction Based on Recurrent Convolution Neural Network with Weighted Loss Function)

  • 김현진;정연승
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권3호
    • /
    • pp.123-128
    • /
    • 2019
  • 본 논문에서는 RCNN (recurrent convolution neural network) 계층 모델을 채택한 인공 지능에 기반을 둔 주가 예측을 제안한다. LSTM (long-term memory model) 기반 신경망은 시계열 데이터의 예측에 사용된다. 다른 한편, 컨볼루션 신경망은 데이터 필터링, 평균화 및 데이터 확장을 제공한다. 제안된 주가 예측에서는 위에서 언급 한 장점들을 RCNN 모델에서 결합하여 적용함으로써 다음날의 주가 종가를 예측한다. 그리고 최근의 시계열의 데이터를 강조하기 위해 커스텀 가중치 손실 함수가 채택되었다. 또한 시장의 상황을 반영하기 위해 주가 인덱스에 관련된 데이터를 입력으로 포함하였다. 제안된 주가 예측 방식은 실제 주가를 대상으로 한 실험에서 3.19%로 테스트 오차를 줄였으며, 다른 방법보다 약 19%의 성능 향상을 거둘 수 있었다.

데이터 전처리를 고려한 하수처리장 머신러닝 모델 개발 (Development of Machine Learning Prediction Models for Wastewater Treatment Plant considering Data Pre-processing)

  • 심규대;김효상;박찬수;김동균;김신걸
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.495-495
    • /
    • 2023
  • 본 연구는 하수처리장 운영시스템 자료를 활용하여, 머신러닝 기반의 예측 모델을 개발하고, 모델 정확도 향상에 대하여 검토하였다. 하수처리장에 설치된 각종 센서를 통해 실시간으로 자료가 모니터링되고 있으며, 수집된 자료는 운영시스템에 저장된다. 하수처리장 시스템은 설정된 값과 센서의 측정값을 비교해 이상치가 발생하면 운영자가 즉각적으로 조치하여 문제를 해결하고 있으나, 비정상적인 상황 발생시 이를 대처할 시간이 부족하여 적절한 조치가 이루어지지 못하는 경우가 발생 되고 있다. 따라서, 이러한 문제점을 해결하기 위해 A 하수처리장 운영자료를 활용하여 결과 예측이 신속하고 신뢰도 높은 머신러닝 기반의 예측 모델을 개발하고자 하였다. 모델의 예측 정확도 및 신뢰성을 향상하기 위하여 결과에 영향을 미치는 주요 영향 인자를 분석하고, 이를 기반으로 모델의 추가 분석 및 개선을 수행하여 모델의 예측력을 평가하였다. 금회 연구는 데이터 전처리를 과정을 통한 인사이트를 도출하고 이를 활용하여 하수처리장 운영자료 예측 정확도를 높일 수 있었으며, 이 결과를 바탕으로 다른 하수처리장의 모델 개발시에도 유용하게 활용이 가능할 것으로 검토되었다.

  • PDF

제주도 동부 중산간지역 지하수위 예측에 적합한 인공신경망 모델의 활성화함수 연구 (A study on activation functions of Artificial Neural Network model suitable for prediction of the groundwater level in the mid-mountainous area of eastern Jeju island)

  • 신문주;김정훈;강수연;이정한;강경구
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.520-520
    • /
    • 2023
  • 제주도 동부 중산간 지역은 화산암으로 구성된 지하지질로 인해 지하수위의 변동폭이 크고 변동양상이 복잡하여 인공신경망(Artificial Neural Network, ANN) 모델 등을 활용한 지하수위의 예측이 어렵다. ANN에 적용되는 활성화함수에 따라 지하수의 예측성능은 달라질 수 있으므로 활성화함수의 비교분석 후 적절한 활성화함수의 사용이 반드시 필요하다. 본 연구에서는 5개 활성화함수(sigmoid, hyperbolic tangent(tanh), Rectified Linear Unit(ReLU), Leaky Rectified Linear Unit(Leaky ReLU), Exponential Linear Unit(ELU))를 제주도 동부 중산간지역에 위치한 2개 지하수 관정에 대해 비교분석하여 최적 활성화함수 도출을 목표로 한다. 또한 최적 활성화함수를 활용한 ANN의 적용성을 평가하기 위해 최근 널리 사용되고 있는 순환신경망 모델인 Long Short-Term Memory(LSTM) 모델과 비교분석 하였다. 그 결과, 2개 관정 중 지하수위 변동폭이 상대적으로 큰 관정은 ELU 함수, 상대적으로 작은 관정은 Leaky ReLU 함수가 지하수위 예측에 적절하였다. 예측성능이 가장 낮은 활성화함수는 sigmoid 함수로 나타나 첨두 및 최저 지하수위 예측 시 사용을 지양해야 할 것으로 판단된다. 도출된 최적 활성화함수를 사용한 ANN-ELU 모델 및 ANN-Leaky ReLU 모델을 LSTM 모델과 비교분석한 결과 대등한 지하수위 예측성능을 나타내었다. 이것은 feed-forward 방식인 ANN 모델을 사용하더라도 적절한 활성화함수를 사용하면 최신 순환신경망과 대등한 결과를 도출하여 활용 가능성이 충분히 있다는 것을 의미한다. 마지막으로 LSTM 모델은 가장 적절한 예측성능을 나타내어 다양한 인공지능 모델의 예측성능 비교를 위한 기준이 되는 참고모델로 활용 가능하다. 본 연구에서 제시한 방법은 지하수위 예측과 더불어 하천수위 예측 등 다양한 시계열예측 및 분석연구에 유용하게 사용될 수 있다.

  • PDF