누구나 뉴스와 주가 사이에는 밀접한 관계를 있을 것이라 생각한다. 그래서 뉴스를 통해 투자기회를 찾고, 투자이익을 얻을 수 있을 것으로 기대한다. 그렇지만 너무나 많은 뉴스들이 실시간으로 생성 전파되며, 정작 어떤 뉴스가 중요한지, 뉴스가 주가에 미치는 영향은 얼마나 되는지를 알아내기는 쉽지 않다. 본 연구는 이러한 뉴스들을 수집 분석하여 주가와 어떠한 관련이 있는지 분석하였다. 뉴스는 그 속성상 특정한 양식을 갖지 않는 비정형 텍스트로 구성되어있다. 이러한 뉴스 컨텐츠를 분석하기 위해 오피니언 마이닝이라는 빅데이터 감성분석 기법을 적용하였고, 이를 통해 주가지수의 등락을 예측하는 지능형 투자의사결정 모형을 제시하였다. 그리고, 모형의 유효성을 검증하기 위하여 마이닝 결과와 주가지수 등락 간의 관계를 통계 분석하였다. 그 결과 뉴스 컨텐츠의 감성분석 결과값과 주가지수 등락과는 유의한 관계를 가지고 있었으며, 좀 더 세부적으로는 주식시장 개장 전 뉴스들과 주가지수의 등락과의 관계 또한 통계적으로 유의하여, 뉴스의 감성분석 결과를 이용해 주가지수의 변동성 예측이 가능할 것으로 판단되었다. 이렇게 도출된 투자의사결정 모형은 여러 유형의 뉴스 중에서 시황 전망 해외 뉴스가 주가지수 변동을 가장 잘 예측하는 것으로 나타났고 로지스틱 회귀분석결과 분류정확도는 주가하락 시 70.0%, 주가상승 시 78.8%이며 전체평균은 74.6%로 나타났다.
본 논문은 시장상황별 주식시장의 제 현상이 상이하다는 점을 고려하여 한국주식시장에서 시장 상승기(bull market)와 시장 하락기(bear market)에 대한 주식수익률 분포의 특성을 파악하고, 음의 수익률충격에 대한 비대칭적 변동성과 시장이상현상들 중 하나인 요일효과를 시장 상황별로 실증분석하였다. 본 논문에 사용된 자료는 1990년 1월 3일부터 1997년 3월 31일 동안의 한국종합주가지수 및 자본금 규모별로 대형주지수, 중형주지수, 소형주지수의 명목수익률로 전환된 일별자료이다. 시장상황별 분석을 위하여 시장 상승기와 하락기에 따라 3기의 하위기간으로 구분하여 분석하였다. 분석에 사용된 모형은 EGARCH모형과 수정된 GARCH모형인 GJR모형이다. 분석결과 시장하락기인 하부기간1과 하부기간3에서 음의 수익률충격에 대한 비대칭적 변동성이 강하게 나타나지만 시장상승기인 2기간에는 비대칭적 변동성반응이 나타나지 않았다. 이는 주식시장이 상승국면일 때보다는 하락국면일 때 나쁜 뉴스에 대해 훨씬 민감하게 반응하는 결과이다. 또한 한국주식시장에서 월요일의 수익률이 시장하락기에 음의 수익률을 보이지만 통계적 유의성은 없었으며, 반면에 시장이 상승기인 하부기간2에서는 월요일과 수요일에 통계적 유의성이 매우 큰 양의 값을 나타냈다.
건전성과 신뢰성이 높은 기업에 선별 투자가 이루어지면 이는 기업의 가치 상승으로 이어지므로 상위 등급의 기업 가치 변동 간 상관성 및 동적 특성에 대한 연구의 필요성이 증대하게 되었다. 본 연구에서는 증권거래소 분류 기업지배구조 등급별 주식수익의 중장기 변동성향을 분석하기 위한 연립방정식 통계모형을 설정하였다. 외생적 충격에 의해 등급별 주식수익에 일어난 변화는 시간이 흐르면서 완만히 조정되어 가는 구조적 특징을 공통적으로 가지고 있으며, 변동 과정이나 성향도 등급 간에 별다른 차이가 없는 것으로 판명되었다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1333-1343
/
2014
본 연구는 일변량 금융지수의 변동성 모형에서 GARCH(1,1) 모형이 여러 복잡한 GARCH 확장 모형에 비교해서 결코 뒤쳐지지 않는다는 Hansen과 Lunde (2005) 연구를 다변량 변동성으로 확장한다. 또한 모형의 비교 방법으로 예측값에 기반한 평균제곱예측오차 (MSPE) 뿐 만 아니라 리스크 관리 측면에서 최대 손실 금액을 나타내는 VaR 및 사후 검정인 실패율을 동시에 고려하였다. 모의실험 결과 다변량 변동성의 경우에서도 GARCH 모형이 예측력은 크게 다르지는 않았으나 리스크 관리 측면에서는 좀 더 신중한 판단을 요구함을 보인다. 또한 최근 10년동안의 KOSPI, NASDAQ 및 HANG SENG의 주가 지수 실증 자료를 통하여 리스크 관리 측면에서의 다변량 GARCH 모형 선택에 대해서 논의한다.
본 논문에서는 금융 시계열 변동성 추정을 위한 준-모수(quasi-likelihood) 방법을 다루고 있다. 모형식에서 오차항의 분포를 미지(unknown)로 하여 준-우도 함수를 통한 모수 추정을 하는 경우 이노베이션의 지정을 멱변환을 통해 구성하였다. 고정된 멱변환에 대한 프로파일-정보 행렬을 비교하여 최대값을 제공하는 멱변환을 제안하였다. 이차원 이노베이션으로의 확장을 다루었으며 코로나 펜데믹 기간의 높은 변동성을 보이는 국내 9개 주가 자료 분석을 통해 방법론을 예시하고 있다.
본 논문에서는 KOSPI 시가총액기준 상위 4종목(삼성전자, 현대차, 현대모비스, POSCO)의 고빈도 거래 데이터를 바탕으로 일중 수익률의 실현변동성과 시장미시구조잡음에 대해 연구한다. Volatility signature plot을 통해 실현변동성(Realized Variance; RV)과 편의수정 실현변동성($RV_{AC_1}$)의 편의를 확인하고 시장미시구조 잡음의 특징을 실증적으로 파악한다. 또한, 잡음 대 신호비(Noise-to-Signal Ratio; NSR)를 사용하여, 평균제곱오차(Mean Square Error; MSE) 기준의 실현변동성(RV)과 편의수정 실현변동성($RV_{AC_1}$)의 최적 추출 빈도수를 추정해본다.
There have been many studies concerning the relationships between stock returns and volatilities. Their positive relationship is well known from the theoretical point of view, but not empirically shown. Franch, Schwert and Stambaugh [11] has empirically provided the indirect evidence of the positive relationship betwen expected stock return and expected volatility. However, their study lacks some statistical validity. This study reexamines the relationship using regression diagnostics and GARCH model from an international point of view. The empirical results fall to show the positive relationship between expected stock return and expected volaiility, which contradicts those of France, Schwert and Stambangh [1].
이 논문은 기존의 포트폴리오와 관련된 모형에 경기변동(business cycle)과 관련된 변수들을 포함하였을 경우 개인투자자들의 현금 및 주식보유를 통한 자본이득 극대화에 도움이 되는지와 관련된 것이다. 그리고 개인투자자들은 경기호황기에는 모멘텀 투자와 소형주와 성장주 등에 포트폴리오를 분산투자하지만 경기가 침체기(recession)에 들어설 경우 수익률이 급등락하는 특성을 지니는 소형주(small cap)에 집중적인 투자를 하는 성향을 나타내고 있다.
과거 국내금융기관의 신용공여는 소수 대기업과 그들의 계열사 및 일부 업종에 집중되었기 때문에 국내금융기관은 위험이 분산된 대출포트폴리오를 소유하지 못했었다. 이번 IMF 금융위기는 다수의 부실채권을 발생시킴으로써 개별 대출에 대한 위험관리뿐만 아니라 대출들로 구성되어진 포트폴리오에 대한 위험관리가 필수적이라는 것을 보여주었다. 본 논문의 목표는 국내금융기관들이 신용위험을 분산시켜 위험-수익 측면에서 효율적인 대출포트폴리오의 관리 방안을 제시하고자 하는 것이다. 본 논문에서는 대출포트폴리오의 효율적 관리를 위하여 선진 금융기관에서 많이 사용하는 계량적 신용위험관리 기법인 KMV Model과 CreditMetrics를 소개하였다. KMV Model은 옵션가격결정모형에 근거하여 기업의 주가수준 및 변동성으로 부터 대출기업의 부도확률을 도출하고, 주가의 상관관계를 토대로 개별 대출들간에 기대수익의 상관관계를 추정한다. 따라서 금융기관은 이 모형을 이용하여 위험이 잘 분산된 효율적인 대출포트폴리오를 구할 수 있다. CreditMetrics는 대출포트폴리오의 위험노출을 계량적으로 평가하는 VaR(Value at Risk)를 구하는 것으로 신용위험으로 인한 대출포트폴리오의 가치변동에 따른 잠재적 손실을 측정하는 기법이다. 이 기법에 따르면 금융기관은 과거 경험에 근거하여 신용등급별로 신용등급의 변동확률을 파악하고, 신용등급의 변동에 따른 대출포트폴리오 가치 변동과 손실가능성을 측정할 수 있다. 이와 같이 국내금융기관은 보다 과학적이고 계량화된 위험관리 기법을 적용하여 개별 대출의 한계위험공헌도 및 대출들 상호간에 위험의 상관관계를 고려하여 신용위험을 분산시키는 대출포트폴리오 관리를 실시해야 할 것이다.
주식 투자는 가장 널리 알려진 재테크 방법들 중 하나지만 실제 투자를 통해 수익을 얻기는 쉽지 않기 때문에 과거부터 효과적이고 안정적인 투자 수익을 얻기 위한 다양한 투자 전략들이 고안되고 시도되어 왔다. 그중 변동성 돌파 전략(Volatility Breakout)은 일일 단위로 일정 수준 이상의 범위를 뛰어넘는 강한 상승세를 돌파 신호로 파악하여 상승하는 추세를 따라가며 일 단위로 빠르게 수익을 실현하는 전략으로 널리 쓰이고 있는 단기 투자 전략들 중 하나이다. 그러나 주식 종목마다 가격의 추이나 변동성의 정도가 다르며 동일한 종목이라도 시기에 따라 주가의 흐름이 일정하지 않아 주가를 예측하고 정확한 매매 시점을 찾아내는 것은 매우 어려운 문제이다. 본 논문에서는 단순히 종가 또는 장기간에 걸친 수익률을 예측하는 기존 연구 방법들과는 달리 단기간에 수익을 실현할 수 있는 주식과 같은 시계열 데이터 분석에 적합한 양방향 장단기 메모리 심층 신경망을 이용하여 변동성 돌파 전략 기반 매매 시의 수익률을 예측하여 주식을 매매하여 방법을 제안한다. 이렇게 학습된 모델로 테스트 데이터에 대하여 실제 매매를 가정하여 실험한 결과 기존의 장단기 메모리 심층 신경망을 이용한 종가 예측 모델보다 수익률과 안정성을 모두 상회하는 결과를 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.