• Title/Summary/Keyword: 좌굴 설계 기준

Search Result 121, Processing Time 0.022 seconds

Examination of Root Causes of Buckling in the Stern Structure of an Oil Tanker using Numerical Modeling (수치해석 모델링을 이용한 유조선 선미부 구조에 발생한 좌굴 발생 원인 검토)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1259-1266
    • /
    • 2022
  • Recently, due to the specialization of structural design standards and evaluation methods, the classification rules are being integrated. A good example is the common international rules (CSR). However, detailed regulations are presented only for the cargo hold area where the longitudinal load is greatly applied, and no specific evaluation guidelines exist for the bow and stern structures. Structural design of the mentioned area is carried out depending on the design experience of the shipbuilder, and because no clear standard exists even in the classification, determining the root cause is difficult even if a structural damage problem occurs. In this study, an engineering-based solution was presented to identify the root cause of representative cases of buckling damage that occurs mainly in the stern. Buckling may occur at the panel wall owing to hull girder bending moment acting on the stern structure, and the plate thickness must be increased or vertical stiffeners must be added to increase the buckling rigidity. For structural strength verification based on finite element analysis modeling, reasonable solutions for load conditions, boundary conditions, modeling methods, and evaluation criteria were presented. This result is expected to be helpful in examining the structural strength of the stern part of similar carriers in the future.

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

A Study on Lateral-Torsional Buckling Strength Equation of Compact T-Beam Subjected to Pure Bending (균일모멘트를 받는 조밀단면 T형보의 횡-비틀림 좌굴강도 기준식에 관한 연구)

  • Park, Jong-Sup;Kim, Yong-Hee;Yi, Gyu-Sei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2038-2043
    • /
    • 2009
  • This study investigates elastic lateral-torsional buckling(LTB) of T-beams subjected to pure bending using finite element analysis(FEA). The results from the FEA are compared with those from the current American Institute of Steel Council(AISC) Load and Resistance Factor Design(LRFD) Specifications. The comparison indicates that AISC-LRFD provide unsafe values for T-beam subjected to pure bending. Therefore, a new design equation are presented using results from the FEA. The new equation could be easily used to calculate the elastic lateral-torsional buckling moment resistance of T-beam for beam design and to expand the new equation for developing LTB equations of T-beam subjected to general loading conditions such as a concentrated load, distributed load, or a seres of concentrated load.

A Study on the Characteristics of SM570TMC Plates in Compression Members (SM570TMC 강재의 압축재 특성에 관한 연구)

  • Im, Sung Woo;Kim, Yo Suk;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.357-363
    • /
    • 2005
  • There is a great need for high-strength steel especially for the high-rise steel building structure. High-strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels. The application of high-strength steels to building structures should be reviewed as to whether the inelastic behavior equivalent to that of conventional steels can be attained or not. In this study, SM570TMC steel was tested to evaluate buckling strength under axial compressive force. The comparison tests for local buckling strength evaluation of box-type and H-shaped welded columns were performed with variable width-thickness ratios. As for the experimental check, the maximum strength of stub column was determined by local buckling as far as the limit of width-to-thickness ratio was satisfied with current design codes. Also, the strength of the stub column did not decrease suddenly by local buckling before maximum strength even when the ratio is not satisfied. The buckling strength of SM570TMC steel was higher than both ASD (Allowable Stress Design) and LRFD (Load and Resistance Factor Design) specifications.

Study on Local Buckling of District Heating Pipes Using Limit State Design (한계상태 설계법을 이용한 지역난방 열배관의 국부좌굴 연구)

  • Kim, Joo-Yong;Lee, Sang-Youn;Ko, Hyun-Il;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1829-1836
    • /
    • 2010
  • The district heating system distributes the heat generated from a cogeneration plant to wider locations. In this process, the district heating pipe (DHP) is subjected to internal and external loadings. The internal loadings are generally caused by the operating conditions such as water temperature and internal pressure. Frictional interactions between the pipes and the soil contribute to the external loadings. Thus, investigation of the mechanisms of failure of DHPs will help to guarantee both mechanical stability and heating efficiency. In this study, we investigate the local buckling of DHPs using limit state design (LSD). Two methods are considered: the use of the limit state for the width-thickness ratio and the use of the limit state for the strain. The results are used to confirm that the DHP is stable under local buckling. Finally, we suggest a minimum preheating temperature for avoiding local buckling.

Estimation of Buckling and Ultimate Strength of a Perforated Plate under Thrust (면내압축하중을 받는 유공판의 좌굴 및 최종강도 평가에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin;Joo, Jong-Gil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.41-47
    • /
    • 2004
  • Plate has cutout inner bottom and girder and Door etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and freight movement, piping etc.. Because cutout‘s existence is positioning in this place, and, elastic bucking strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic bucking strength and ultimate strength is one of important design criteria to decide structural elements size at early structure design step of a ship. Therefore, we need reasonable & reliable design formula for elastic bucking strength of the perforated plate. The author computed numerically ultimate strength change about several aspect ratios, cutout dimension, and plate thickness by using ANSYS Finite element analysis code based on finite element method in this paper.

  • PDF

Estimation of Buckling and Ultimate Strength of a Perforated Plate under Thrust (면내압축하중을 받는 유공판의 좌굴 및 최종강도 평가에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.129-135
    • /
    • 2004
  • Plate has cutout inner bottom and girder and floor etc in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc. Because cutout's existence gnaws in this place, and, elastic budding strength by load rouses large effect in ultimate strength. Therefore, perforated plate elastic budding strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step if ship. Therefore, and, reasonable elastic budding strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method

  • PDF

A Study on the Geometric Nonlinear Behaviour of Ship Plate by Energy Method (에너지법에 의한 선체판의 기하학적 비선형거동에 관한 연구)

  • Jae-Yong Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.94-104
    • /
    • 1999
  • Plate buckling is very important design criteria when the ship is composed of high tensile steel plates. In general, the plate element contributes to inplane stiffness against the action of inplane load. If the inplane stiffness of the plating decreases due to buckling including the secondary buckling, the flexural rigidity of the cross section of a ship's hull also decreases. In these cases, the precise estimation of plate's behaviour after buckling is necessary, and geometric nonlinear behaviour of isolated plates is required for structural system analysis. In this connection, the author investigated the geometric nonlinear behaviour of simply supported rectangular plates under uniaxial compression in the longitudinal direction in which the principle of minimum potential energy method is employed. Based on the energy method, elastic large deflection analysis of isolated palate is performed and simple expression are derived to discuss the bifurcation paint type buckling and limit point type buckling.

  • PDF

Elastic Buckling Strength of Orthotropic Plate under Combined In-Plane Shear and Bending Forces (면내 전단력과 휨을 동시에 받는 직교이방성판의 탄성좌굴강도)

  • 윤순종;박봉현;정상균
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.46-52
    • /
    • 1999
  • In this paper result of an analytical investigation pertaining to the elastic buckling behavior of orthotropic plate under combined in-plane shear and bending forces is presented. The existing analytical solution developed for the isotropic plates is extended so that the orthotropic material properties can be taken into account in the buckling analysis of web plate. For the solution of the problems Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under combined in-plane shear and bending forces is presented. Brief discussion on the design criteria for the shear and bending interaction is also presented.

  • PDF

Parametric Study on design Variables of Rectangular Concrete Filled Tubular Columns with High-Strength Steel (유한요소해석에 의한 고강도 강재를 사용한 각형 콘크리트 충전 강관 기둥의 설계인자 분석)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Yun-Cheol;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.10-21
    • /
    • 2015
  • For the safe design of steel-concrete composite structure, usable yield strength of steels are limited in most of design standard. However, this limitation sometimes cause the uneconomical design for some kind of members such as slender columns which was affected by elastic buckling load. For the economical design for slender columns, parametric study of RCFT (Rectangular CFT) with high-strength steel is conducted, especially investigating the limitation of yield strength of high-strength steels. Using ABAQUS, finite element analysis program, the finite element model was constructed and calibrated with experimental study for RCFT with high strength steel which have yield strength up to 680MPa. Investigated design parameters are yield strength of steel, compressive strength of concrete, steel thickness and slenderness ratio. The effect of design parameters were compared with design standard, KBC-09. From the parametric study with 54 models and previous test specimens, RCFT can be safely design with higher yield strength of steels than currently limited by KBC for large range of slenderness ratio.