• Title/Summary/Keyword: 좌굴 거동 현상

Search Result 50, Processing Time 0.021 seconds

Postbuckling and Vibration Analysis of Cylindrical Composite Panel subject to Thermal Loads (열하중을 받는 복합적층 원통형 패널의 좌굴후 거동 및 진동해석)

  • Oh, Il-Kwon;Lee, In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.148-156
    • /
    • 1999
  • The thermal postbuckling and vibration characteristics of cylindrical composite panel subject to thermal loads are analyzed using finite elements. The von-Karman nonlinear displacement-strain relation based on the layerwise theory is applied to consider large deflections due to thermal loads. Cylindrical arc-length method is used to take into account the snapping phenomena. Thermal snapping and vibration characteristics are investigated for various structural parameters such as thickness ratio, shallowness angle and boundary conditions. The present results show that thermal snapping changes the mode shapes as well as static deformations.

  • PDF

A Study on the Snap-through Behaviour of Plate Elements due to the Initial Deflection Shape (초기처짐형상에 따른 판부재의 천이거동에 관한 연구)

  • Park, Joo-Shin;Lee, Kye-Hee;Ko, Jae-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Since High Tensile Steel has been widely used to thin plate on the steel structure and marine structure, It has increased possibility of buckling. Especially, initial deflection of ship structure is mainly caused by heat processing of welding or cutting etc. This initial deflection has negative effect to thin plate, which would incur a complicated nonlinear behavior accompanied with secondary buckling. If idealized initial deflection is considered in early marine structure design of secondary buckling, accuracy and reliability will be improved considerably. The measurement data of initial deflection from experiment is applied to finite element series analysis. For FEA(ANSYS), Applied nonlinear buckling analysis is used by Newton-Raphson method & Arc-length method included in this program.

Determination of the Critical Buckling Loads of Shallow Arches Using Nonlinear Analysis of Motion (비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정)

  • Kim, Yun Tae;Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.43-54
    • /
    • 1992
  • For shallow arches with large dynamic loading, linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of shallow arches in which geometric nonlinearity must be considered. A program is developed for the analysis of the nonlinear dynamic behavior and for evaluation of critical buckling loads of shallow arches. Geometric nonlinearity is modeled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion and Newmark method is adopted in the approximation of time integration. A shallow arch subject to radial step loads is analyzed. The results are compared with those from other researches to verify the developed program. The behavior of arches is analyzed using the non-dimensional time, load, and shape parameters. It is shown that geometric nonlinearity should be considered in the analysis of shallow arches and probability of buckling failure is getting higher as arches are getting shallower. It is confirmed that arches with the same shape parameter have the same deflection ratio at the same time parameter when arches are loaded with the same parametric load. In addition, it is proved that buckling of arches with the same shape parameter occurs at the same load parameter. Circular arches, which are under a single or uniform normal load, are analyzed for comparison. A parabolic arch with radial step load is also analyzed. It is verified that the developed program is applicable for those problems.

  • PDF

Dynamic Buckling Characteristics of Arch Structures by Sinusoidal Harmonic Excitation (정현형 조화하중에 의한 아치 구조물의 동적 좌굴 특성에 관한 연구)

  • 윤태영;김승덕
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • The dynamic instability for snapping phenomena has been studied by many researchers. Few paper deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures are subjected to sinusoidal harmonic excitation with pin-ends. By using Newmark- β method, we can get the nonlinear displacement response, and using this analyze characteristics of the dynamic instability through the running response spectrum by FFT(Fast Fourier Transform).

Characteristics of Buckling Load and Bifurcation in Accordance with Rise-span Ratio of Space Truss Considering Initial Imperfection (초기 불완전성을 고려한 공간 트러스의 분기좌굴과 라이즈-스팬 비에 따른 임계하중 특성)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.337-348
    • /
    • 2012
  • This study investigated the characteristics of bifurcation and the instability due to the initial imperfection of the space truss, which is sensitive to the initial conditions, and the calculated buckling load by the analysis of Eigen-values and the determinant of tangential stiffness. A two-free nodes model, a star dome, and a three-ring dome model were selected as case studies in order to examine the unstable phenomenon due to the sensitivity to Eigen mode, and the influence of the rise-span ratio and the load parameter on the buckling load were analyzed. The sensitivity to the imperfection of the two-free nodes model changed the critical path after reaching the limit point through the bifurcation mode, and the buckling load level was reduced by the increase in the amount of imperfection. The two sensitive buckling patterns for the model can be explained by investigating the displaced position of the free node, and the asymmetric Eigen mode was a major influence on the unstable behavior due to the initial imperfection. The sensitive mode was similar to the in-extensional mechanism basis of the simplified model. Since the rise-span ratio was higher, the effect of local buckling is more prominent than the global buckling in the star dome, and bifurcation on the equilibrium path occurring as the value of the load parameter was higher. Additionally, the buckling load levels of the star dome and the three-ring model were about 50-70% and 80-90% of the limit point, respectively.

Papers : Snap - through Phenomena on Nonlinear Thermopiezoelastic Behavior of Piezolaminated Plates (논문 : 압전적층판의 비선형 열압전탄성 거동에서의 스냅 - 스루 현상)

  • O,Il-Gwon;Sin,Won-Ho;Lee,In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are investigated by applying an are-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von Karman strain-displacement relationships, nonlinear finite element formulations are derived for the thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopierzoelastic behavior and vibration characteristicx are stuied for symmetric and eccentric structural models with various piezoelestric actuation modes. Present results show the possibility to enhance the performance, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection piezolaminated paltes.

Inelastic Behavior of H-Shaped Beams with Web Openings under Cyclic Loading (반복하중을 받는 유공 H-형강 보의 소성 거동)

  • Lee, E.T.
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.513-524
    • /
    • 2001
  • A total of nine H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria are based on the formulae proposed by Darwin. The suitability of existing design formulae the effects of plastic hinge on beams with web openings the fracture around the web openings and the influence of cracks neighboring web openings to the beam strength under cyclic loading were also investigated through the observation of the behavior of these beams with various opening dimensions. locations numbers and spacing between the two openings.

  • PDF

Local Buckling Behaviors of Flat-Type Stiffeners in Stiffened Plate System (보강판시스템에 적용되는 판형보강재의 국부좌굴거동)

  • Kim, Kyung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6521-6526
    • /
    • 2013
  • Elastic and nonlinear ultimate strength analyses were conducted to examine the effects of the stiffness and slenderness of flat-type stiffeners on ultimate in-plane strengths of a stiffened plate system. Although it is not feasible to consider local buckling in the stiffeners in elastic analysis, it was confirmed that the in-plane strengths of the stiffened plate system can be achieved by antisymmetric buckling mode when a certain level of stiffness in the stiffeners is provided. Nonlinear ultimate strength analysis, in which initial imperfection and residual stress are incorporated, showed that the ultimate strengths are sensitively affected by the mode shapes for initial imperfections. The slenderness limit for flat-type stiffeners in KHBDC (Korean Highway Bridge Design Code) was evaluated as conservative compared to the analysis results.

In-plane buckling strength of fixed arch ribs subjected vertical distributed loading (수직 등분포 하중을 받는 고정 지점 포물선 아치 리브의 면내 좌굴 강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Kim, Sung Hoon;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.439-447
    • /
    • 2005
  • When arch ribs are subjected to vertical loading, they may buckle suddenly towards the in-plane direction. Therefore, the designer should consider their in-plane stability. In this paper, the in-plane elastic and inelastic buckling strength of parabolic, fixed arch ribs subjected to vertical distributed loading were investigated using the finite element method. A finite element model for the snap-through and inelastic behavior of arch ribs was verified using other researchers' test results. The ultimate strength of arch ribs was determined by taking into account their large deformation, material inelasticity, and residual stress. Finally, the finite element analysis results were compared with the EC3 design code.

A Study on the Unstable behavior according to Lode and boundary condition of shelled space frame structure (쉘형 스페이스 프레임 구조물의 하중 및 경계조건에 따른 불안정 거동에 관한 연구)

  • Kim, Nam-Seok;Shon, Su-Deog;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.80-85
    • /
    • 2008
  • This paper investigate the structure instability properties of the shelled space frame structure. The large structure must have thin thickness for build the large space structure there fore structure instability review is important when we do structural design. The structure instability of the shelled structure accept it sensitively by varied conditions. This come to a nonlinear problem with be concomitant large deformation. In this study, it is compared unstable behavior according to lode and boundary condition of the shelled space frame structure through numerical method which considered geometrical nonlinear and grasped influence for the instability phenomenon and investigated the fundamental collapse mechanism.

  • PDF