• Title/Summary/Keyword: 종횡비 영향

Search Result 128, Processing Time 0.019 seconds

Effects of Duct Aspect Ratio on Heat Transfer in Wavy Duct of Heat Exchanger of Gas Turbine (가스터빈용 열교환기의 주름진 덕트에서 종횡비 변화가 열전달 특성에 미치는 영향)

  • Kim, Han Ho;Hwang, Sang Dong;Cho, Hyung Hee;Cho, Jae Ho;Jeon, Seung Bae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.339-344
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics in wavy ducts of primary surface heat exchanger. Experiments using a naphthalene technique are carried out to determine the local transfer characteristics for flow in the corrugated wall duct. The aspect ratios of the rectangular duct cross-section are 7.3, 4.7 and 1.8 with a corrugation angle of $145^{\circ}$. The Reynolds numbers, based on the duct hydraulic diameter, are ranged from 1000 to 5000. The local heat/mass transfer measurement is conducted in the spanwise directions. The results show that Tayler-Gortler vortices exist on the pressure surface. Flow separation on the suction surface appears at a high Reynolds number resulting in a sharp decrease in the local transfer rates, but relatively high transfer rates are obtained in the reattachment region.

  • PDF

Effect of an aspect ratio on thermal stratification in a solar seasonal thermal storage tank (태양열 계간 축열조 내부 열성층화에 대한 탱크 종횡비 영향 연구)

  • Kim, Seong Keun;Jung, Sung Yong
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2020
  • In this study, we numerically investigated the thermal stratification in solar seasonal thermal storage tanks. The vertical in/out flows were unsuitable for the thermal stratification in a large scale. The effect of an aspect ratio (AR) on the thermal stratification was investigated. When AR was less than 2, water adheres and flows along the upper wall due to buoyance and the surface effect. Thereafter, hot water flows down and a large scale vortex occurs in entire tank. For high AR, jet flows ejected from the inlet pipe impinges to the opposite wall and splits. The divided flows create two vortex flows in the upper and lower regions. These different flows strongly influence temperature and thermal stratification. The thermal stratification was evaluated in terms of the thermocline thickness and degree of stratification. Compared to ARs, the maximum degree of stratification was obtained with AR of 5 having the minimum thermocline thickness.

An Experimental Study on Close-Contact Melting in Horizontal Capsules with Circular or Rectangular Cross Sections (원형 및 사각단면을 가지는 수평캡슐에서의 접촉용해에 관한 실험적 연구)

  • Kim, Si-Pom;Lee, Chi-Woo
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.39-48
    • /
    • 1993
  • This empirical paper addresses the phenomena of the contact melting of PCM in horizontal capsules of circular and rectangular cross sections with various aspect ratio. The melting-rate tends to increase as the Stefan number increases. The case of rectangular tube displays larger melting-rate than that of circular tube, and the melting-rate increases as the aspect ratio decreasws for rectangular tubes. In case of circular tube, the effect of natural convection on the melting-rate is 6.1%, 8.6% and 11.2% according to Stefan number 0.0772, 0.1287 and 0.1802 respectively.

  • PDF

Effects of the aspect ratio and inlet velocity on the thermal stratification in a diffuser type seasonal thermal storage tank (디퓨저 타입 계간 축열조 내부 열성층화에 대한 입구 유속 및 탱크 종횡비 영향 연구)

  • Kim, Seong Keun;Jung, Sung Yong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, the thermal stratification in solar seasonal thermal storage tanks was numerically simulated. The effects of the aspect ratio (AR) and inlet velocity on the thermal stratification in the diffuser type heat storage tank were investigated. The temperature distributions inside the tank were similar with velocity fields. Jet flows from opposite diffusers encountered each other at the tank center region. Thereafter, the downward flows occurred, and this flows strongly affected the thermal stratification. When AR was smaller than 2, these downward flows influenced a further distance and enhanced mixing inside the tank. Thermal stratification was evaluated by thermocline thickness and degree of stratification, and AR of 3 had the highest degree of stratification. The inlet velocity effect was expressed with the ratio (Re/Ri) of Reynolds and Richardson numbers. The second-order approximation was found for the relationship between the thermocline thickness and log Re/Ri.

Critical Elastic Buckling Load Investigation of Aluminium Alloy A6082-T6 Square plate Subjected to Patch Loading (패치 로딩을 받는 알루미늄 합금 A6082-T6 사각형 판의 임계 탄성좌굴하중 검토)

  • Oh, Young-Cheol;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.451-460
    • /
    • 2014
  • In this paper, we examined the problem of the structural stability according to the patch load of a rectangular plate that reflects the material properties of A6082-T6 is used primarily for marine plant structure. it applied to the four patch loading shapes, the effect of aspect ratio, a boundary condition and calculated the critical elastic buckling load. Calculating the critical elastic buckling load, During the eigenvalue buckling analysis it is applied to the shell181 as 4 node shell element. when the plate subjected to patch loading compare to the plate under a uniform axial compression load, it is possible observed to occur the different elastic buckling behaviour and it could be confirmed that it is affected significantly on a variable position and type of loadings, such as the effect of the aspect ratio. Also, Critical elastic buckling load according to th patch loading type in simply supported rectangular plate a/b=1.0, ${\gamma}b$=200mm are calculated 67%(Loading type I), 119 %(Loading type II), 76 %(Loading type III), 160 %(Loading type IV), respectively. Loading type I and III could be determined with the strong elastic buckling behavior much more than Loading type II and IV.

Study on the Coefficient of Thermal Expansion for Composites Containing 2-Dimensional Ellipsoidal Inclusions (2차원 타원형의 충전제를 함유하는 복합재료의 열팽창 계수 연구)

  • Lee, Kee-Yoon;Kim, Kyung-Hwan;Jeoung, Sun-Kyoung;Jeon, Hyoung-Jin;Joo, Sang-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.160-167
    • /
    • 2007
  • This paper proposes a model for the solutions predicting the coefficient of thermal expansion of composites including fiber-like shaped$(a_1>a_2=a_3)$ and disk-like shaped$(a_1=a_2>a_3)$ inclusions like two dimensional geometries, which was analyzed by one axis and a single aspect ratio, $(\rho_\alpha=a_1/a_3)$. The analysis follows the procedure developed for elastic moduli by using the Lee and Paul's approach. The effects of the aspect ratio on the coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The longitudinal coefficients of thermal expansion $\alpha_{11}$ decrease and approach the coefficient of thermal expansion of filler, as the aspect ratios increase. However, the transverse coefficients of thermal expansion $\alpha_{33}$ increase or decrease with the aspect ratios.

Effects of Short-fiber Aspect Ratio and Diameter Ratio on Tensile Properties of Reinforced Rubber (단섬유 종횡비 및 직경비가 강화고무의 인장특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.18-25
    • /
    • 2003
  • The tensile properties of short nylon6 fiber reinforced NR and SBR have been investigated as functions of fiber aspect ratio(AR), diameter ratio(DR), interphase condition, and fiber content. The tensile strength increased with increasing fiber AR(20 min.) and good interphase conditions. The short-fiber(DR=3 and AR=20 min.) reinforced SBR did not show the dilution effect for all interrhase conditions. And the short-fiber(DR=3 and AR=20min.) reinforced NR did not show the dilution effect except for the no-coating. The tensile moduli were significantly improved due to fiber AR. fiber content, and good interphase at same DR. The better interphase condition showed the higher pull-out force at same DR. Also, the stress analysis near the fiber end carried out using axisymmetric FEA to be convinced of the reinforcing mechanism. It is found that the fiber AR, interphase and DR have an important effect on tensile properties.

The Whole Region Pressure Measurement of Cavity Downstream using PSP Technique (PSP를 이용 다양한 공동 후류의 전역적 압력분포 측정)

  • Seo, Hyung-Seok;Oh, Ju-Young;Jeon, Young-Jin;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.50-57
    • /
    • 2007
  • Pressure Sensitive Paint(PSP) means a reacting paint in pressure. PSP can measure continuous pressure field by analyzing the oxygen quantity using optical method. The surface pressure of down stream after the sonic jet that injected transversely into the supersonic freestream was measured by PSP technique. Moreover the effect of various rectangular shaped cavities in front of the jet was measured by PSP technique. A comparison of the PSP results with conventional pressure tap and CFD indicates good agreement. Until now, the results of numerical analysis were compared with the discrete points such as the results of pressure tap. In this study, the whole region pressure was measured using PSP technique and its results were similar to CFD. Therefore, the flow phenonenon of cavity downstream was clearly grasped.

Ultrasound-Assisted Extraction of Canola Oil Using Supercritical Fluid Process (초음파가 적용된 초임계 유체 공정을 이용한 캐놀라오일 추출)

  • Hwang, Ah-Reum;Lim, Gio-Bin;Ryu, Jong-Hoon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.437-442
    • /
    • 2010
  • The objective of this study was to investigate the effect of ultrasound on the extraction of oil from canola seeds when supercritical carbon dioxide ($SCCO_2$) was used as an extraction solvent. The ultrasound-assisted $SCCO_2$ extraction were carried out while varying such operating parameters as particle size of crushed canola seed, flow rate of $SCCO_2$, aspect ratio of the extraction vessel, and ultrasound power. The extraction rate decreased with increasing particle size of samples, showing a maximun at a $CO_2$ flow rate of 6.2 L/min. Both the extraction rate and extraction yield increased with a decrease in the aspect ratio of the extraction vessel. For the ultrasoundassisted $SCCO_2$ extraction, the extraction yield was slightly increased when the $CO_2$ flow rate was below 6 mL/min with sample A and B.

A Study on the Buckling Strength of Perforated Plates for 60M Twin-hull Car-ferry (60M급 쌍동형 카페리 구조의 유공판 좌굴강도 연구)

  • Seo, Kwang-Cheol;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.126-132
    • /
    • 2018
  • This paper discusses about results of advanced buckling strength design for several kinds of perforated plated in the twin-hull car-ferry. For medium / small sized high speed vessels with a length of more than 50 meters and a length / width ratio of more than 12, such as car-ferries, it is highly possible that the buckling strength becomes weak due to the relatively thin thickness and the use of low strength capacity such as mild steel. Especially, it becomes big problem about weak buckling rigidity around the opening to access purpose in the perforated. As regarding safety design point of view for perforated plate, it is necessary to clarify buckling strength and ultimate strength by the distribution of in-plane load distribution around the opening. In this study, nonlinear series analysis using ANSYS was performed to clarify the influence of parameters such as aspect ratio, opening ratio and opening shape affecting the buckling and ultimate strength characteristics of the perforated plate under axial compression and we are derived the optimum design as buckling strength point of view. Based on these results, the governing factor determining the buckling strength of the perforated plate was the opening ratio, and the aspect ratio and the shape of the hole were not influenced.