• Title/Summary/Keyword: 종분포모형

Search Result 18, Processing Time 0.033 seconds

A Comparison of Machine Learning Species Distribution Methods for Habitat Analysis of the Korea Water Deer (Hydropotes inermis argyropus) (고라니 서식지 분석을 위한 기계학습식 종분포모형 비교)

  • Song, Won-Kyong;Kim, Eun-Young
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.171-180
    • /
    • 2012
  • The field of wildlife habitat conservation research has attracted attention as integrated biodiversity management strategies. Considering the status of the species surveying data and the environmental variables in Korea, the GARP and Maxent models optimized for presence-only data could be one of the most suitable models in habitat modeling. For make sure applicability in the domestic environment we applied the machine learning species distribution model for analyzing habitats of the Korea water deer($Hydropotes$ $inermis$ $argyropus$) in the $Sapgyocheon$ watershed, $Chungcheong$ province. We used the $3^{rd}$ National Natural Environment Survey data and 10 environment variables by literature review for the modelling. Analysis results showed that habitats for the Korea water deer were predicted 16.3%(Maxent) and 27.1%(GARP), respectively. In terms of accuracy(training/test) the Maxent(0.85/0.69) was higher than the GARP(0.65/0.61), and the Spearman's rank correlation coefficient result of the Maxent(${\rho}$=0.71, p<0.01) was higher than the result of GARP(${\rho}$=0.55, p<0.05). However results could be depended on sites and target species, therefore selection of the appropriate model considering on the situation will be important to analyzing habitats.

Riparian Connectivity Assessment Using Species Distribution Model of Fish Assembly (어류군집의 종분포모형을 이용한 수변지역 연결성 평가)

  • Jeong, Seung Gyu;Lee, Dong Kun;Ryu, Ji Eun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2015
  • River corridors facilitate dispersal and movement and prevent local extinction of species. As a result of stream restoration projects, which include installation of waterfront and flood control structures, the number of animals, which rely on river corridor, is decreasing. For the study, factors affecting fish assembly were extracted by a species distribution model with the fish data collected from the Seom River in Hoengseong County and City of Wonju, Ganwon Province, Korea between March to October 2013. The riparian connectivity was assessed using species richness and rarity. According to result of the field survey, there were 38 species and 7,061 individuals for fish. The analysis suggests the following. Firstly, factors affecting fish richness in species distribution model results are shown to be velocity, riffle, riparian width, and water width. The accuracy of the model proves to be suitable with the correlation coefficient of 0.83 and MAPE of 19.2%. Secondly, the low rarity area is shown to be straight streams in Jeon river near to Hongseong County and the high rarity area to be streams with large width, existing alluvial area at channel junction between Jeon river and Seom river. Thirdly, according to connectivity results, areas where weirs are installed or riparian buffer area is removed showed low connectivity. The areas where farmland near riparian and forest areas showed high connectivity. The results of this study can be utilized to improve current facilities and enhance connectivity as a restoration guide.

Potential Impact of Climate Change on Distribution of Warm Temperate Evergreen Broad-leaved Trees in the Korean Peninsula (기후변화에 따른 한반도 난대성 상록활엽수 잠재서식지 분포 변화)

  • Park, Seon Uk;Koo, Kyung Ah;Kong, Woo-Seok
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.2
    • /
    • pp.201-217
    • /
    • 2016
  • We accessed the climate change effects on the distributions of warm-evergreen broad-leaved trees (shorten to warm-evergreens below) in the Korean Peninsula (KP). For this, we first selected nine warm-evergreens with the northern distribution limits at mid-coastal areas of KP and climate variables, coldest month mean temperature and coldest quarter precipitation, known to be important for warm-evergreens growth and survival. Next, species distribution models (SDMs) were constructed with generalized additive model (GAM) algorithm for each warm-evergreen. SDMs projected the potential geographical distributions of warm evergreens under current and future climate conditions in associations with land uses. The nine species were categorized into three groups (mid-coastal, southwest-coastal, and southeast-inland) based on their current spatial patterns. The effects of climate change and land uses on the distributions depend on the current spatial patterns. As considering land uses, the potential current habitats of all warm-evergreens decrease over 60%, showing the highest reduction rate for the Kyungsang-inland group. SDMs forecasted the expansion of potential habitats for all warm-evergreens under climate changes projected for 2050 and 2070. However, the expansion patterns were different among three groups. The spatial patterns of projected coldest quarter precipitation in 2050 and 2070 could account for such differences.

  • PDF

Selection of Optimal Models for Predicting the Distribution of Invasive Alien Plants Species (IAPS) in Forest Genetic Resource Reserves (산림생태계 보호구역에서 외래식물 분포 예측을 위한 최적 모형의 선발)

  • Lim, Chi-hong;Jung, Song-hie;Jung, Su-young;Kim, Nam-shin;Cho, Yong-chan
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.589-600
    • /
    • 2020
  • Effective conservation and management of protected areas require monitoring the settlement of invasive alien species and reducing their dispersion capacity. We simulated the potential distribution of invasive alien plant species (IAPS) using three representative species distribution models (Bioclim, GLM, and MaxEnt) based on the IAPS distribution in the forest genetic resource reserve (2,274ha) in Uljin-gun, Korea. We then selected the realistic and suitable species distribution model that reflects the local region and ecological management characteristics based on the simulation results. The simulation predicted the tendency of the IAPS distributed along the linear landscape elements, such as roads, and including some forest harvested area. The statistical comparison of the prediction and accuracy of each model tested in this study showed that the GLM and MaxEnt models generally had high performance and accuracy compared to the Bioclim model. The Bioclim model calculated the largest potential distribution area, followed by GLM and MaxEnt in that order. The Phenomenological review of the simulation results showed that the sample size more significantly affected the GLM and Bioclim models, while the MaxEnt model was the most consistent regardless of the sample size. The optimal model overall for predicting the distribution of IAPS among the three models was the MaxEnt model. The model selection approach based on detailed flora distribution data presented in this study is expected to be useful for efficiently managing the conservation areas and identifying the realistic and precise species distribution model reflecting local characteristics.

Applying Ensemble Model for Identifying Uncertainty in the Species Distribution Models (종분포모형의 불확실성 확인을 위한 앙상블모형 적용)

  • Kwon, Hyuk Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.47-52
    • /
    • 2014
  • Species distribution models have been widely applied in order to assess biodiversity, design reserve, manage habitat and predict climate change. However, SDMs has been used restrictively to the public and policy sectors owing to model uncertainty. Recent studies on ensemble and consensus models have been increased to reduce model uncertainty. This paper was carried out single model and multi model for Corylopsis coreana and compares two models. First, model evaluation was used AUC, kappa and TSS. TSS was the most effective method because it was easy to compare several models and convert binary maps. Second, both single and ensemble model show good performance and RF, Maxent and GBM was evaluated higher, GAM and SRE was evaluated lower relatively. Third, ensemble model tended to overestimate over single model. This problem can be solved by the suitable model selection and weighting through collaboration between field experts and modeler. Finally, we should identify causes and magnitude of model uncertainty and improve data quality and model methods in order to apply special decision-making support system and conservation planning, and when we make policy decisions using SDMs, we should recognize uncertainty and risk.

Prediction of Shift in Fish Distributions in the Geum River Watershed under Climate Change (기후변화에 따른 금강 유역의 어류 종분포 변화 예측)

  • Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.198-205
    • /
    • 2015
  • Impacts of climate change on aquatic ecosystems range from changes in physiological processes of aquatic organisms to species distribution. In this study, MaxEnt that has high prediction power without nonoccurrence data was used to simulate fish distribution changes in the Geum river watershed according to climate change. The fish distribution in 2050 and 2100 was predicted with RCP 8.5 climate change scenario using fish occurrence data (a total of 47 species, including 17 endemic species) from 2007 to 2009 at 134 survey points and 9 environmental variables (monthly lowest, highest and average air temperature, monthly precipitation, monthly lowest, highest and average water temperature, altitude and slope). The fitness of MaxEnt modeling was successful with the area under the relative operating characteristic curve (AUC) of 0.798, and environmental variables that showed a high level of prediction were as follows: altitude, monthly average precipitation and monthly lowest water temperature. As climate change proceeds until 2100, the probability of occurrence for Odontobutis interrupta and Acheilognathus yamatsuatea (endemic species) decreases whereas the probability of occurrence for Microphysogobio yaluensis and Lepomis macrochirus (exotic species) increases. In particular, five fish species (Gnathopogon strigatus, Misgurnus mizolepis, Erythroculter erythropterus, A. yamatsuatea and A. koreensis) were expected to become extinct in the Geum river watershed in 2100. In addition, the species rich area was expected to move to the northern part of the Geum river watershed. These findings suggest that water temperature increase caused by climate change may disturb the aquatic ecosystem of Geum river watershed significantly.

Prediction of Potential Species Richness of Plants Adaptable to Climate Change in the Korean Peninsula (한반도 기후변화 적응 대상 식물 종풍부도 변화 예측 연구)

  • Shin, Man-Seok;Seo, Changwan;Lee, Myungwoo;Kim, Jin-Yong;Jeon, Ja-Young;Adhikari, Pradeep;Hong, Seung-Bum
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.562-581
    • /
    • 2018
  • This study was designed to predict the changes in species richness of plants under the climate change in South Korea. The target species were selected based on the Plants Adaptable to Climate Change in the Korean Peninsula. Altogether, 89 species including 23 native plants, 30 northern plants, and 36 southern plants. We used the Species Distribution Model to predict the potential habitat of individual species under the climate change. We applied ten single-model algorithms and the pre-evaluation weighted ensemble method. And then, species richness was derived from the results of individual species. Two representative concentration pathways (RCP 4.5 and RCP 8.5) were used to simulate the species richness of plants in 2050 and 2070. The current species richness was predicted to be high in the national parks located in the Baekdudaegan mountain range in Gangwon Province and islands of the South Sea. The future species richness was predicted to be lower in the national park and the Baekdudaegan mountain range in Gangwon Province and to be higher for southern coastal regions. The average value of the current species richness showed that the national park area was higher than the whole area of South Korea. However, predicted species richness were not the difference between the national park area and the whole area of South Korea. The difference between current and future species richness of plants could be the disappearance of a large number of native and northern plants from South Korea. The additional reason could be the expansion of potential habitat of southern plants under climate change. However, if species dispersal to a suitable habitat was not achieved, the species richness will be reduced drastically. The results were different depending on whether species were dispersed or not. This study will be useful for the conservation planning, establishment of the protected area, restoration of biological species and strategies for adaptation of climate change.

Prediction of Potential Habitat of Japanese evergreen oak (Quercus acuta Thunb.) Considering Dispersal Ability Under Climate Change (분산 능력을 고려한 기후변화에 따른 붉가시나무의 잠재서식지 분포변화 예측연구)

  • Shin, Man-Seok;Seo, Changwan;Park, Seon-Uk;Hong, Seung-Bum;Kim, Jin-Yong;Jeon, Ja-Young;Lee, Myungwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.291-306
    • /
    • 2018
  • This study was designed to predict potential habitat of Japanese evergreen oak (Quercus acuta Thunb.) in Korean Peninsula considering its dispersal ability under climate change. We used a species distribution model (SDM) based on the current species distribution and climatic variables. To reduce the uncertainty of the SDM, we applied nine single-model algorithms and the pre-evaluation weighted ensemble method. Two representative concentration pathways (RCP 4.5 and 8.5) were used to simulate the distribution of Japanese evergreen oak in 2050 and 2070. The final future potential habitat was determined by considering whether it will be dispersed from the current habitat. The dispersal ability was determined using the Migclim by applying three coefficient values (${\theta}=-0.005$, ${\theta}=-0.001$ and ${\theta}=-0.0005$) to the dispersal-limited function and unlimited case. All the projections revealed potential habitat of Japanese evergreen oak will be increased in Korean Peninsula except the RCP 4.5 in 2050. However, the future potential habitat of Japanese evergreen oak was found to be limited considering the dispersal ability of this species. Therefore, estimation of dispersal ability is required to understand the effect of climate change and habitat distribution of the species.

A Comparative Study on Species Richness and Land Suitability Assessment - Focused on city in Boryeong - (종풍부도와 세분화된 관리지역 비교 연구 - 보령시를 대상으로 -)

  • Shin, Manseok;Jang, Raeik;Seo, Changwan;Lee, Myungwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.35-50
    • /
    • 2015
  • The purposes of this study are to apply species distribution modeling in urban management planning for habitat conservation in non-urban area and to provide a detailed classification method for management zone. To achieve these objectives, Species Distribution Model was used to generate species richness and then to compare with the results from land suitability assessment. 59 species distribution models were developed by Maxent. This study used 15 model variables (5 topographical variables, 4 vegetation variables, and 6 distance variables) for Maxent models. Then species richness was created by sum of predicted species distributions. Land suitability assessment was conducted with criteria from type I of "Guidelines for land suitability assessment". After acquiring evaluation values from species richness and land suitability assessment, the results from these two models were compared according to the five grades of classification. The areas with the identical grade in Species richness and land suitability assessment are categorized and then compared each other. The comparison results are Grade1 10.92%, Grade2 37.10%, Grade3 34.56%, Grade4 20.89% and Grade5 1.73%. Grade1 and Grade5 showed the lowest agreement rate. Namely, development or conservation grade showed high disagreement between two assessment system. Therefore, the areas located between urban, agriculture, forest, and reserve have a tendency to change easily by development plans. Even though management areas are not the core area of reserve, it is important to provide a venue for species habitat and eco-corridor to protect and improve biodiversity in terms of landscape ecology. Consequently, adoption of species richness in three levels of management area classification such as conservation, production, planning should be considered in urban management plan.

A Study on the Species Distribution Modeling using National Ecosystem Survey Data (전국자연환경조사 자료를 이용한 종분포모형 연구)

  • Kim, Jiyeon;Seo, Changwan;Kwon, Hyuksoo;Ryu, Jieun;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.4
    • /
    • pp.593-607
    • /
    • 2012
  • The Ministry of Environment have started the 'National Ecosystem Survey' since 1986. It has been carried out nationwide every ten years as the largest survey project in Korea. The second one and the third one produced the GIS-based inventory of species. Three survey methods were different from each other. There were few studies for species distribution using national survey data in Korea. The purposes of this study are to test species distribution models for finding the most suitable modeling methods for the National Ecosystem Survey data and to investigate the modeling results according to survey methods and taxonominal group. Occurrence data of nine species were extracted from the National Ecosystem Survey by taxonomical group (plant, mammal, and bird). Plants are Korean winter hazel (Corylopsis coreana), Iris odaesanensis (Iris odaesanensis), and Berchemia (Berchemia berchemiaefolia). Mammals are Korean Goral (Nemorhaedus goral), Marten (Martes flavigula koreana), and Leopard cat (Felis bengalensis). Birds are Black Woodpecker (Dryocopus martius), Eagle Owl (Bubo Bubo), and Common Buzzard (Buteo buteo). Environmental variables consisted of climate, topography, soil and vegetation structure. Two modeling methods (GAM, Maxent) were tested across nine species, and predictive species maps of target species were produced. The results of this study were as follows. Firstly, Maxent showed similar 5 cross-validated AUC with GAM. Maxent is more useful model to develop than GAM because National Ecosystem Survey data has presence-only data. Therefore, Maxent is more useful species distribution model for National Ecosystem Survey data. Secondly, the modeling results between the second and third survey methods showed sometimes different because of each different surveying methods. Therefore, we need to combine two data for producing a reasonable result. Lastly, modeling result showed different predicted distribution pattern by taxonominal group. These results should be considered if we want to develop a species distribution model using the National Ecosystem Survey and apply it to a nationwide biodiversity research.