• Title/Summary/Keyword: 종방향 안전성

Search Result 101, Processing Time 0.025 seconds

Development of Mechanical Test Techniques for Irradiated Zircaloy Cladding in Hot Cell (조사 지르칼로이 피복관의 기계적 특성시험 기술 개발)

  • 김도식;홍권표;주용선;안상복;송웅섭;유병옥;김기하
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.213-213
    • /
    • 2003
  • 고온 및 고압의 가혹한 방사선 분위기에서 사용되는 핵연료 피복관은 중성자 조사 및 수소화합물의 생성 등으로 인하여 기계적 성질이 저하된다. 따라서 조사된 핵연료 피복관의 손상기준 확립과 안전성 해석을 위해서는 연성 및 강도 등 기계적 특성을 정확히 이해하여야 할 필요가 있다. 핵연료 피복관의 종 및 횡 방향 인장특성 평가를 위하여 개발된 기존의 다양한 시험법들을 비교하고, 핫셀시험에 적합한 인장시험법을 개발하였다. 피복관의 종방향 인장시편은 튜브시편 또는 게이지부 내에서 균일한 변형률 분포를 얻도록 설계된 도그본 튜브시편(그림 1)을 사용한다. 피복관의 횡방향 인장시험에 사용되는 링시편(그림 2)은 게이지부 내에서 균일한 단축 원환변형율 분포 또는 평면변형율 조건을 나타내도록 설계한다. 연소 또는 조사된 피복관으로부터 시편을 제작하기 위해서는 핫셀 내에서 작업 이 가능한 방전가공기(그림 3)를 사용한다. 피복관의 종방향 인장시험용그립(grip)은 핀-부하형이며, 횡방향 인장시험의 경우는 시험 동안 시편의 곡률이 일정하게 유지 되도록 그립의 형상 및 치수를 결정한다(그림 4). 피복관의 종 및 횡방향 강도와 변형 등 기계적 특성을 평가하기 위한 응력-변형율 곡선은 시험기의 복합 강성(K)을 고려하여 결정한다. 이상과 같이 검토된 인장시험법은 피복관의 안전성 해석(safety analysis)과 관련 규정(regulatory)에서 사용되는 피복관 손상기준(fuel damage criteria)의 개선에 필수적인 자료를 제공한다.

  • PDF

A Case Study on the Structural Safety Assessment of Box Construction with Opening (Block-Out된 암거의 구조안전성 검토 사례 연구)

  • 은충기;채원규;김광일;손영현;홍성욱
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.48-53
    • /
    • 2003
  • 최근 기존 암거구조물에 하수관로 등 추가적인 관로의 설치에 의해 암거 구조물이 손상을 입는 경우가 종종 발생되고 있으나, 현장여건상 이에 대한 구조적 안전성의 검토가 미비한 채 시공이 이루어지는 경우가 많다. 이에 본 연구에서는 기존 암거의 상단부에 흄관이 관통하였을 경우 block-out된 암거구조물의 구조적 거동을 검토하기 위하여, 암거구조물의 손상 인접부위의 종방향 및 횡방향 휨모멘트를 구조해석에 의해 산출하고, 이들 구조해석 결과에 의해 block-out된 암거의 손상 인접부위에 대한 구조안전성 검토를 수행하였다.(중략)

  • PDF

Impact Condition of Safety Performance Evaluation for Longitudinal Barriers of SMART Highway (스마트하이웨이 종방향 방호울타리안전성능 평가를 위한 충돌조건)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.49-57
    • /
    • 2009
  • To minimze the degree of damage for the SMART highway's punctuality and safety after car-barrier collisions, the impact condition for longitudinal barriers of SMART highway was determined to be quite larger than the existing maximum impact condition. The impact condition consists of impact vehicles, impact velocities, and impact angles. To consider the occupant safety of passenger cars as much as possible, a small car with high risk during impact was selected as the impact vehicle for the evaluation of occupant risk. The impact velocity was determined to be 20% larger than the existing maximum impact velocity in order to include accident impact velocities as much as possible. The impact angle was determined to include most of expected accident impact angles. Computer simulations using various impact conditions were conducted for the existing domestic highest-performance medium and roadside barrier. How the suggested impact condition has an effect on the occupant safety was investigated. The existing domestic highest-performance medium and roadside barriers could not satisfy the suggested impact condition. New high-performance longitudinal barriers are required to minimize the degree of damage for the SMART highway's punctuality and safety after car-barrier collisions.

Analysis of Trench Slope Stability in Permafrost Regions According to the Vertical and Horizontal Angle of Slope (동토지반에서 종방향 및 횡방향 사면의 경사에 따른 트렌치 안전성 분석)

  • Kim, Jong-Uk;Kim, Jung-Joo;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • In this study, the stability of trench slope was analysed in summer and winter seasons for the construction of pipelines in permafrost regions. The construction standards of Korea, Russia and UK were compared for obtaining an optimum trench shape for a pipeline of 30 in. diameter. Using the geotechnical properties of soil in Yakutsk (Russia), the stability of trench slope was analysed using Strength Reduction Method (SRM) according to the horizontal slope angle values of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$ and vertical slope angle values of $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$. In both seasons, an increase in the slope angle results in a decrease in the factor of safety. The results show that horizontal slope angle of $30^{\circ}$ was not safe in summer season. At the vertical slope angle of $20^{\circ}$, trench side failure was observed, whereas, ground slope failure was observed at the vertical slope angles of $30^{\circ}$ and $40^{\circ}$. Due to the solidification of pore water at temperatures below $0^{\circ}C$, cementation of soil particles take place. Therefore, the trench slope was found to be stable in the winter season at all vertical and horizontal slop angles, except for special load cases and abrupt temperature changes.

Analysis of cause and deterioration about using 3-Arch tunnel (공용중인 3-Arch터널의 열화조사 및 원인분석)

  • Lee, Yu-Seok;Park, Sung-Woo;Whang, In-Baek;Shin, Yong-Suk;Kim, Sun-Gon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • This paper studied the cause of the deterioration of the four 3-Arch tunnels built in mid-1990. The common deteriorations of the four 3-Arch tunnels were longitudinal cracks, leakage and efflorescence at the same parts of lining concrete. Three fourths of 3-Arch tunnels, there was high percentage longitudinal cracks and a quarter was low frequency about longitudinal cracks. So the material reviewed to find out the differences between two groups in construction process and analysis was conducted such as non-destructive testing, precise visual survey and safety evaluation of one tunnel which had bad ground condition As the result, the tunnels were safety condition and the primary deterioration occurred during the construction process, namely, problems arrangement of rebar and the effects of the blast at middle tunnel.

경부 고속철도 교량 건설공범 - 8-2공구를 중심으로 -

  • 황낙연;김창환
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.2
    • /
    • pp.19-28
    • /
    • 2001
  • 고속철도에서는 고속주행으로 인한 탈선을 방지하기 위하여 연직 또는 평면선형에 대하여 매우 엄격히 제한하고 있다. 종방향 경사는 2.5% 이하, 평면곡선반경에 대하여는 7,000 m 이상으로 규정하고 있으므로, 도로는 물론 일반철도에 비하여 교량구조물 발생은 더욱 증가된다. 한편 고속철도 교량은 구조물의 안전성 뿐만 마니라 승차감을 위하여 동적거동에 대하여 엄격히 제한된다. 또한 교량과 레일의 상호작용 등에 따라 무한장 개념의 레일에 악영향을 피하기 위해 교량의 종방향 변위도 제한되기 때문에 지간 장이 짧고 상판 구조물은 큰 강성을 갖게 된다. (중략)

  • PDF

Experimental Study on Hydrofoil Arrangement and Longitudinal Moment Characteristics for Navigation Safety of High Speed Craft (고속선 운항 안정성을 위한 수중익 배치 및 종모멘트 특성에 관한 실험적 연구)

  • Park, Hwa-Pyeong;Kim, Sang-Hyun;Lim, Geun-Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • In this study, we have discussed about the effect of hydrofoil arrangement and longitudinal moment characteristic on longitudinal motion stability of fully-submerged hydrofoil by the experiment of tandem hydrofoil model. First of all, tandem hydrofoil model that has canard wing arrangement has been made and characteristics of lift force and drag force by performing the lift force and drag force measuring experiment has also been estimated. Besides, tandem hydrofoil model's wing arrangement which has the initial stability and self stability of longitudinal motion has also been determined. In longitudinal stability experiment of tandem hydrofoil model, the motion characteristic of pitch and heave and the longitudinal stability of foil borne condition by variation of self stability of longitudinal moment and longitudinal distance are estimated. The result from the experiment and it's important conclusion can be described as below; Increase the self stability for longitudinal moment, the higher self stability for pitch motions in a constant pitch angles. By increasing the self stability for longitudinal moment, the range of fluctuation of pitch motion and heave motion for pitch angle also will change relatively small and longitudinal stability is excellent. Lastly, when the lift force of hydrofoil is remain constants, we can conclude that securing the enough self stability for longitudinal moment is essential for stable foil borne condition of tandem hydrofoil.

Kinematic Model based Predictive Fault Diagnosis Algorithm of Autonomous Vehicles Using Sliding Mode Observer (슬라이딩 모드 관측기를 이용한 기구학 모델 기반 자율주행 자동차의 예견 고장진단 알고리즘)

  • Oh, Kwang Seok;Yi, Kyong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.931-940
    • /
    • 2017
  • This paper describes a predictive fault diagnosis algorithm for autonomous vehicles based on a kinematic model that uses a sliding mode observer. To ensure the safety of autonomous vehicles, reliable information about the environment and vehicle dynamic states is required. A predictive algorithm that can interactively diagnose longitudinal environment and vehicle acceleration information is proposed in this paper to evaluate the reliability of sensors. To design the diagnosis algorithm, a longitudinal kinematic model is used based on a sliding mode observer. The reliability of the fault diagnosis algorithm can be ensured because the sliding mode observer utilized can reconstruct the relative acceleration despite faulty signals in the longitudinal environment information. Actual data based performance evaluations are conducted with various fault conditions for a reasonable performance evaluation of the predictive fault diagnosis algorithm presented in this paper. The evaluation results show that the proposed diagnosis algorithm can reasonably diagnose the faults in the longitudinal environment and acceleration information for all fault conditions.

Impact Conditions of Performance Evaluation, and Development of High-Performance Roadside Barrier for Longitudinal Barriers in Smart Highway (스마트하이웨이 종방향 베리어 성능평가 충돌조건과 고성능 노측용 베리어 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Jang, Dae-Young
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.59-67
    • /
    • 2011
  • To minimize the degree of damage in the SMART highway's punctuality and safety occurred from the car-barrier collisions, the impact conditions for longitudinal barriers in SMART highway was determined to be significantly larger than the existing maximum impact conditions. Results from computer simulation runs show that the existing domestic highest-performance roadside barrier did not satisfy the suggested impact conditions. The newly developed N-class barrier designed with computer simulation model and verified by full-scale crash tests has satisfied the SMART highway impact conditions in terms of occupant safety indexes and structural adequacy.

Assessment of Safe Navigation Including the Effect of Ship-Ship Interaction in Restricted Waterways (제한수역에서 두선박간의 상호간섭력을 포함한 안전항해의 평가)

  • Lee, Chun-Ki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.5-10
    • /
    • 2003
  • This paper is mainly concerned with the assessment of safe navigation between ships moving each other in restricted waterways. The manoeuvring simulation was conducted parametrically to propose an appropriate sage speed and distance, which is required to avoid sea accident under the different conditions, such as ship-velocity ratios, ship-length ratios, separation and stagger between ships. The manoeuvring characteristics based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in confined water.

  • PDF