• Title/Summary/Keyword: 존치기간

Search Result 26, Processing Time 0.03 seconds

Analysis on Stripping Time of Form of High-Early-Strength Concrete Incorporating Binder and Admixture (결합재 및 혼화제를 사용한 조강 콘크리트의 거푸집 탈형 시기 분석)

  • Jun, Myoung-Hoon;Bang, Jong-Dae;Lee, Bum-Sik;Park, Seong-Sik;Park, Ji-Young;Cho, Gun-Hee
    • Land and Housing Review
    • /
    • v.4 no.2
    • /
    • pp.193-200
    • /
    • 2013
  • Construction duration in construction project is an important factor which affects project cost. Advanced countries have reduced project cost by time shortening. Even though domestic construction companies have tried to time shortening, they yet failed to find systematic method for time shortening. Typically, duration of structural framework is affected by stripping time of form. Therefore, it need to shorten the stripping time of form for time shortening of structural framework. In this study, specimens of high-early-strength concrete were manufactured with variety conditions and compressive strength was tested. This study proposed stripping time of side and slab forms using test results. The stripping time of form was shortened when using high-early-strength concrete in structural framework by the test results. The result of this study will be useful for time shortening of structural framework.

A study on $CO_2$ absorption of concrete during life cycle of building (건물 생애주기 동안 콘크리트의 이산화탄소 흡수에 관한 연구)

  • Lee, Sang-Hyun;Lee, Han-Seoung;Song, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.577-580
    • /
    • 2008
  • Concrete absorbs $CO_2$ in the air because of carbonation. according to rising concern for lasting earth environment efforts of reducing greenhouse gas, especially co2, are occurred whole industry throughout the world. In this paper selected one building and computed amount of production and absorbtion of co2 during its lifecycle at concrete. In computing amount of absorbtion of co2 considered amount of absorbtion according to the area of concrete changing senarioes of servicelife(40,60,80 years) and deconstruct preiod(60,40,20 years). As a result, size of concrete and maintenance period of disused concrete work increasement of $CO_2$ as main factors. We came to the conclusion that maintenance period is more important than recycle of unused concrete as a method for reducing environmental load in architectural industry.

  • PDF

Mechanical Properties and Stress-Strain Model of Re-Bars Coldly Bent and Straightened (굽힌 후 편 철근의 기계적 성질과 응력-변형률 모델)

  • Chun, Sung-Chul;Tak, So-Young;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • In the construction of high-rise buildings, bent re-bars are manually straightened to connect slabs to core-walls, which are usually cast before floor structures. During cold bending and straightening of re-bars, plastic deformation causing work hardening, Bauschinger effect and aging hardening is unavoidable. Tensile tests of coldly bent and straightened re-bars were conducted with test parameters of grade, diameter, and bend radius of re-bars as well as age between bending and straightening. Test results showed that proportional limits were lower and strain hardening occurred without yield plateaus. Inside and outside of re-bars with compression and tension deformations, respectively, during bending showed lower yield points due to Bauschinger effect and no yield plateaus due to work hardening, respectively. When re-bar grade was higher, yield point became significantly lower where Grade 400 re-bars had yield strengths lower than specified yield strength of 400 MPa. Because the surface of re-bar has higher strength than the core of re-bar, Bauschinger effect was more obvious for higher-grade re-bars. When age between bending and straightening was greater, yield strength increased and elongation decreased (i.e. embrittlement occurs). Using measured data, stress-strain relationship for straightened re-bars was developed based on Ramberg-Osgood model, which can be used to evaluate stiffness of joints when straightened re-bars are applied.

An Analysis on the Structural Deterioration Properties of Timeworn Masonry Buildings in Metropolitan Area (대도시 지역의 노후 조적조 건축물의 구조 성능 열화 특성 분석)

  • Kwon, Ki-Hyuk;Lee, Kyoung-Yong;Yang, Hee-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.181-189
    • /
    • 2003
  • Because of the gravitation of population toward large cities, a number of masonry buildings have been constructed since 1960. They have been rapidly deteriorated as time passed by. Therefore the purpose of this paper is to present basic data on timeworn masonry buildings which have been managed by metropolitan government and to analyse their deterioration factors. And then, the results of this paper can be used to establish the policy of managing timeworn masonry buildings. According to this study, the crack of masonry wall is the most effective deterioration factor and timeworn masonry buildings have a problem with foundation. The structure grade have an interrelation with occupancy type more than building age. Also, the longer building age becomes, the sooner deterioration speeds. A timeworn masonry building is in urgent need of reinforcement on a thirty-year period of building age.

A Study on The Construction of Choryang-Waegwan (초량왜관의 조영활동에 관한 연구)

  • Chung Ye-Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.195-216
    • /
    • 2005
  • This study concerns especially Choryang-Weagwan which was the largest Japanese House left in Pusan through Chosun Dynasty.Choryang-Waegwan was known to have been jointly constructed by Korean and Japanese carpenters. Therefore, Weagwan was a place for exchange of architectural tradition (special features such as sliding door and straw mat) between Korean and Japan. Judging from this point of view, It is certain that mutual influences helped to shape architecture of Choryang-Weagwan. After establishment Choryang-Weagwan was gradually extended, owing to the prosperity of trade with Japan. But since late 18th century government of Chosun did not give as much care to maintaining Choryang-Weagwan as a result of deteriorating condition of commercial and diplomatic relations with Japan. From the beginning of Choryang-Weagwan construction, Superintendents of the construction were called Hun-do and Byl-cha, who acted as official interpreters as well. And, during construction works, they were called Gamdong-gwan. At the start of construction, Weagwan was built partly in Japanese-style by the carpenters from Tokugawa Shogunate. But as time passed, the participation rate of Japanese carpenters diminished gradually. After 1831, Japanese technician vanished extremely and repairing construction was continued by the Korean

  • PDF

Development of Concrete IoT Management System using internal of things technique (IoT 기술을 활용한 콘크리트 초기 품질관리 시스템(CIMS)의 개발)

  • Seo, Hang-Goo;Sin, Se-Jun;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.61-62
    • /
    • 2019
  • With development of IT technology, the ubiquitous has been realized in various industry. In construction industry, as well, end-edge techniques have been introduced such as managing technique the temperature and compressive strength of the concrete placed in structure in domestic and abroad project sites. However, several problems were found during application at the actual field regarding difficulties of connecting Bluetooth communication due to the short communication range, diffuse reflection caused by aluminum formwork, and high cost by using one-time sensor. Therefore to recover these shortages, and improve the performances, the wireless sensor network based concrete IoT management system for concrete early-age quality management was developed.

  • PDF

Compressive Strength Development Properties of Concrete using Sodium based Accelerating Admixtures (나트륨계 기반 조강형 혼화제를 사용한 콘크리트의 압축강도발현 특성)

  • Song, Yeong-Chan;Lee, Tae-Gyu;Kim, Yong-Ro;Seo, Chi-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.259-266
    • /
    • 2018
  • In recent years, the early strength of concrete is important in order to shorten the time of form removal at the construction site. The purpose of this study is to analyze the moment of form removal as investigating the amount of cement contents and the physical properties and strength of the concrete according to types of admixture in the curing temperature of $10^{\circ}C$ for concrete of 21 to 27 MPa. As a result, it was found that compressive strength of concrete could not be secured 5 MPa by 36 hours even if the amount of cement contents were increased to $360kg/m^3$ with plain admixture. Also, it was confirmed that the strength improvement rate was excellent when using the accelerating agent with polycarboxylic acid type, and the moment of compressive strength of 5 MPa was estimated at 30 hours.

A Study on the Determination of the Removal Times of Form in Concrete Using Fly Ash Cement (플라이애시 시멘트를 사용한 콘크리트의 거푸집 존치기간 결정에 관한 연구)

  • Shin Byung-Cheol;Han Min-Cehol
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.185-191
    • /
    • 2006
  • In this paper, removal time of side form from concrete using OPC(ordinary Portland cement) and FAC(fly ash cement) are proposed by appling logistic model, which evaluates the strength development of concrete with maturity. W/B, types of cement and curing temperatures are adapted as test parameters. The estimation of strength development by logistic model has a good agreement between calculated values and measured ones. As for the removal times of form works suggested in this paper, as W/8 increases, curing temperature decreases and fly ash is used, removal time of side form is prolonged. Removal time of form from concrete using OPC suggested in this paper is shorter $2.5\~3.5$ days than those of KASS-5 (Korean Architectural Standard Specifications-5) in the range of over $20^{\circ}C$. And in the range of $10\~20^{\circ}C$ removal time of form is shorter than that of KASS-5 by as much as $4\~4.5$ days. The use of FAC results in an increase in removal time of form compared to that of OPC by about 1 day.