본 연구에서는 다중 에이전트를 이용한 타깃 감지 문제를 다루는데, 특히 이동식 에이전트를 활용한 감지 문제는 경로 계획에 대한 전략이 추가로 필요하다. 문제의 목표는 특정 기간 내 감지 프로세스를 통해 총 효용을 극대화할 수 있는 각 에이전트의 경로를 찾는 것인데, 시간에 따라 타깃의 사건 발생 확률이 변하도록 하는 포아송 프로세스(Poisson process) 기반의 확률적 프로세스(stochastic process)를 고려하여 현실적인 효용 값을 반영한다. 본 감지 문제의 목적함수는 비선형(non-linearity)이고, NP-난해(NP-hard) 문제로 표현된다. 효율적인 계산 시간 내에 효과적인 해를 찾기 위해, 본 연구에서는 하위모듈성(submodularity)의 특성을 갖는 목적함수임을 증명하고, 이를 활용해 비교적 낮은 계산 시간으로 합리적인 전략을 얻기 위한 휴리스틱 알고리즘을 제안한다. 제안한 알고리즘은 해의 성능과 적절한 계산 시간 내에 해를 도출할 수 있다는 측면에서 우수한 알고리즘임을 이론 및 실험적으로 제시한다.
본 연구는 제대혈과 골수로부터 얻은 조혈모세포를 재조합 retrovirus로 감염시킬 때의 최적조건을 human growth hormone (hGH)과 $\beta$-galactosidase를 발현하는 두 가지의 다른 retroviral vector를 이용하여 찾았다. Retrovirus는 자라는 세포에만 감염하는 것으로 알려져 있어 이에 대한 최적조건을 구하기 위해 세포 배양을 통해 조혈모세포의 성장곡선을 얻었으며, 또한 감염된 세포를 환자에게 다시 넣는 유전자요법에서는 이 세포가 체내에서 가능하면 조혈모세포의 기능을 가지는 것이 요구되어 이 때 얻어진 세포의 분열능을 나타내는 집락형성 세포분율을 구하였다. 우선, 세포성장에 대해 조사한 결과 초기에 넣은 세포농도가 5$\times$$10^4$세포/mL일 때 세포성장속도가 가장 빠른 것으로 나타났다. 그러나, 배양시간이 지남에 따라 집락을 형성할 수 있는 능력은 급격하게 감소하여 유전자요법을 위한 최적조건을 구하기 위해서는 이를 고려한 최적화가 필요하였다. 이를 위한 예비실험으로 감염이 잘 된다고 알려진 NIH3T3 세포에 retrovirus 상층액으로 감염시킨 결과 성공적으로 유전자가 전달된 것을 배지에 분비되는 hGH을 측정하여 확인하였다. 이러한 결과로부터 hGH을 발현하는 재조합 retrovirus는 정상적으로 작동하는 것을 확인하였다. 그러나, 조혈모세포와 retrovirus를 분비하는 packaging cell을 동시 배양하는 방법을 채택하였다. 제대혈로부터 얻은 조혈모세포와 대장균 lacZ 유전자로부터 $\beta$-galactosidase를 분비하는 packaging cell을 이용한 경우 동시배양의 경우 조혈모세포를 3일 동안 세포배양을 한 후 이 증식된 세포를 48시간 동안 동시배양하면서 감염시켰을 때 최대의 감염율을 나타내었다. 한편, 골수로부터 얻은 조혈모세포와 hGH을 분비하는 packaging cell과 동시배양시켰을 때 세포농도가 다름에도 불구하고 제대혈에서와 마찬가지로 조혈모세포를 3일 동안 세포배양한 후 48시간 동안 동시배양하는 경우에 hGH이 최대로 분비되었다. 이러한 결과로부터 세포의 source나 세포농도와 관계없이 유전자전달을 통한 단백질의 발현에 있어서 최적조건이 존재하였다. 그러나, 이러한 경우에 유전자전달이 완료되는 시점이 배양을 시작한지 5일이 되므로 집락을 형성할 수 있는 세포의 분율이 약 1/3로 감소하였다. 따라서, 이러한 결과를 유전자요법에 적용하는 경우에는 그 목적에 따라 적절한 실험조건을 선정하는 것이 필요하리라 사료된다.
부착의존성 세포주인 Trichoplusia ni 의 유래의 BTI-TN5B1-4 (TN5) 곤충세포주를 이용하여 인간 혈소판생성축진인자인 재조합 인간 트롬보포이에틴(rhTPO)의 배양조건 최적화 연구를 수행하였다. 배양배지, 세포감염에 투입되는 재조합 베큘로바이러스와 숙주세포의 비율(MOI),세포감염시 세포밀도, 배지 회수시간 및 배양방법 등이 rhTPO 의 생산에 미치는 효과를 연구하여 60 mm dish로 정체 배양시 10 MOl 이상,$2\times10^6$ cells 의 세포밀도,바이러스 감염 후72 시간에서 rhTP0 의 최대 발현양 (약 12 mg/L)을 나타내었다. 배양 배지로서는 EXCELL FIVE 배지가 SF900II나Insect serum free media-1 Figure 5. Effect of growth phases on rhTPO production. TN5 cells were grown as suspension culture in 1 L spinner flask with 200 mL of SF900II serum free medium at 80 rpm. The cells were infected with AcBac404-2 at MOl of 1. Culture medium was collected at given time intervals and the expression level of rhTPO was analyzed by ELISA (A) or immunoblot analysis (B). Lanes 1 and 7; cell density of $0.6\times10^6$ cells/mL, lanes 2 and 8; cell density of $1.6\times10^6$ cells/mL, lanes 3 and 9; cell density of $2.0\times10^6$ cells/mL, lanes 4 and 10; cell density of $3.0\times10^6$ cells/mL, lane M; prestained molecular weight marker (Bio-Rad). Lanes 1, 2, 3, and 4; culture medium was collected at 48 hpi and lanes 7, 8, 9, and 10; culture medium was collected at 72 hpi. Figure 6. Effect of culture media on rhTPO production. TN5 cells grown with different culture media were infected with AcBac-404-2 at 10 MOL 10$\mu$L of culture medium was run on SDS-PAGE and Immunoblot analysis was performed. Lane ];TN5 cells cultured with SF900II serum free media(Gibco),and lane 3; TN5 cells cultured with EXPRESS FIVE serum free media (Gibco) 에 비해 더 증가된 발현양을 나타내었다. TN5 세포주를 0.2 L 규모 (1 L spinner flask)oJl에서 세포간의 응집현상 없이 부유배양에 적응,배양시킨 후 세포성장 시기에 따른 발현을 조사한 결과 1 MOI의 감염조건 하에서는 $0.6\times10^6$cell/mL의 early exponential시기의 세포밀도에서 72시간 배양하였을 대 최대 발현양을 나타내었다. 나타내었다.
재조합 균주인 E. coli JM109/DL-3를 사용하여 carboxymethylcellulase를 생산하기 위한 배지의 최적 염 농도를 orthogonal array method (OAM)과 response surface method (RSM) 등과 같은 통계학적인 방법으로 확립하고 그 결과를 비교하였다. OAM에 기초를 한 Qualitek-4 Software를 사용하여 실험을 계획하고, 그 결과를 분석한 결과는 K2HPO4가 균체의 생장 및 carboxymethylcellulase의 생산에 미치는 영향이 가장 크다는 사실을 확인하였다. 균체의 생육에 최적인 $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$ 및 $(NH_4)_2SO_4$의 농도는 10.0, 1.0, 0.2 및 0.6 g/l이었으나, carboxymethylcellulase의 생산에 최적인 각 염들의 농도는 각각 5.0, 1.0, 0.4 및 0.6 g/l이었다. RSM에 기초를 한 Design-Expert Software를 사용하여 실험을 계획하고, 그 결과를 분석한 결과는 $K_2HPO_4$가 균체의 생장 및 carboxymethylcellulase의 생산에 가장 중요한 인자라는 사실을 확인하였다. 균체의 생장에 최적인 $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$ 및 $(NH_4)_2SO_4$의 농도는 7.44, 1.08, 0.22 및 0.88 g/l이었으나, carboxymethylcellulase의 생산에 최적인 각 염들의 농도는 각각 5.84, 0.69, 0.28 및 0.54 g/l이었다. 기본적으로 OAM에 기초한 software를 사용하여 얻은 결과는 RSM에 기초한 software를 사용하여 얻은 결과와 유사하였다. 최적 조건에서 재조합 균주 E.coli JM109/DL-3이 생산하는 carboxymethylcellulase의 생산은 B. amyloliquifacience DL-에 비하여 1.92배 증가하였다.
목적 : 평행영상(Parallel imaging)기법의 개발로 긴 촬영시간 때문에 종종 사용되지 못하던 삼차원 영상기법이 최근 들어 환자 병을 진단하는데 새로이 사용되고 있다. 이 연구의 목적은 최근에 뇌 영상에서 개발되어 이용되고 있는 삼차원 자기공명영상을 사람의 뇌에서 짧은 시간 내에 얻을 수 있도록 2차원 평행영상 기법을 사용한 최적화 방법을 연구하는데 있다. 대상 및 방법 : 검사 장비는 3.0T 자기공명영상장치를 이용하였으며 8-채널 SENSE(sensitivity encoding) 머리 코일을 이용하였다. 팬텀 및 3명의 사람 머리에서 영상을 얻었다. 세 가지의 삼차원 영상법인 3D T1WI, 3D T2WI 및 3D FLAIR 영상 방법에 대하여 평행인자(SENSE factor)의 변화에 따른 팬텀 영상을 얻었다. 각각의 영상법에서 영상획득에 적당한 SENSE 인자를 찾기 위해 Phase encoding 방향과 Slice encoding 방향을 조합한 SENSE 인자를 변화시키면서 영상을 얻었다. 영상분석을 위하여 특정영역(ROI)를 설정한 후에 신호대 잡음비 (Signal-to-noise ratio, SNR), 감소분율(Percent Signal Reduction Rate, %R), 대조도(contrast-to-noise ratio, CNR)를 계산하였다. 결과 : 팬텀을 이용한 SENSE 인자 변화에 따른 SNR 및 %R 값의 변화 결과 3D T1WI 방법에서 SENSE 인자를 사용한 것들 중에서 SENSE 인자를 총 3인 경우 약 0.2%의 신호 감소가 나타났고 영상시간은 5분 이내였다. 3D T2WI 방법의 경우 SENSE 인자를 사용한 것들 중에서 SENSE 인자를 총 3인 경우에 약 1.0% 신호 감소가 나타났고 영상 시간은 약 5분 이내였다. 3D FLAIR 방법의 경우 SENSE 인자를 사용한 것들 중에서 SENSE 인자를 4를 사용한 경우에 약 0.2% 신호 감소가 나타났고 영상시간은 약 6분이었다. 사람을 대상으로 할 경우 3D T1W 및 3D T2W영상에서 SNR 및 CNR은 SENSE 인자를 3으로 한 경우에서 SENSE 인자를 4로 한 경우 보다 높게 나타났다. 3D FALIR 영상의 경우 CNR은 SENSE 4에서는 SENSE 3에 비하여 낮았다. 결론 : 본 연구에서는 3가지 3차원 영상법을 실제 임상적용이 가능한 시간 영역에서 SENSE 인자를 변화 시키면서 치적의 영상을 얻도록 하는 연구를 실시한 결과 SNR 감소를 최소화 하면서 영상획득 시간을 약 5분에서 6분 정도 소요되는 2차원 SENSE 인자를 찾았다. 이를 뇌 영상에 적용하였을 경우 SENSE 인자를 적용하지 않은 경우와 비교하면 신호 감소는 최소화 하면서 영상의 질은 큰 영향을 주지 않은 것으로 나타났다. 3D T1W및 3D T2W는 SENSE 인자를 3으로 3D FLAIR인자는 SENSE 인자를 4로 하는 것이 환자를 대상으로 한 뇌 영상에 적합하다고 생각된다. 앞으로는 이들 영상법이 뇌 영상뿐만 아니라 다른 영역의 영상에 적용을 위한 최적화가 필요하다고 생각된다.
환경 친화적이고 질병을 유발시키지 않는 천연색소의 사용이 증가함에 따라 천연색소를 추출하는 다양한 방법이 연구되고 있다. 본 연구에서는 천연염료인 chlorophyll을 포함하고 있는 식물성 원료인 파슬리를 대상으로 천연색소를 추출하였다. 추출용매의 pH와 추출온도를 변수로 추출된 천연염료의 녹색계열의 목표색 코드 #50932C (L = 55.0, a = -40.0, b = 46.0)을 설정하고, 추출된 천연염료의 명도와 색좌표(L, a, b)의 정량적 수치로부터 색도분석을 수행하였다. 반응표면분석법에 의해 예측된 색도분석 중 색좌표 분석은 최적조건인 pH 8.0, 추출온도 $60.9^{\circ}C$에서의 이론적 수치 L (55.0), a (-36.3), b (36.8)를 나타냈고, 실제 실험으로 확인한 결과 L (69.0), a (-35.9), b (31.4)를 나타내, 이론 정확도 73.0%, 실제오차율은 13.8%로 확인되었으며, 색차분석의 ${\Delta}E$의 이론 최적화 값은 pH = 9.2 추출온도 $55.2^{\circ}C$에서 ${\Delta}E$ (12.4)이었고, 실제 실험의 경우 ${\Delta}E$ (13.0)로 나타났다. 색차 분석의 이론정확도 97.5% 및 실제 오차율은 4.5%를 나타냈다. 하지만, 색좌표의 조합이 목표색에 근사한 색을 나타내지 않았고, 단지 산술기하 평균적으로서 목표색에 근사함을 나타냈다. 따라서 천연염료 추출공정에 반응표면분석법을 적용시킬 경우 반응치로 색차 ${\Delta}E$에 비해 색좌표(L, a, b)를 이용하는 것이 색소추출공정의 최적화에 더 우수한 방법인 것으로 사료된다.
본 연구에서 한국형 중이온 가속기 RAON에서의 의생물 실험을 위하여 요구되는 빔 조건을 만족할 수 있도록 Monte Carlo 전산모사를 통한 노즐 설계를 최적화하고자 하였다. 의생명 실험을 위한 빔 조건으로 최대 조사면 크기, 선량균일도 그리고 빔 오염도의 특정 조건을 만족하는 $C^{12}$ 빔 생산이 요구되었다. 이때 최적화된 빔 노즐 설계를 위하여 Monte Carlo 시뮬레이션인 GEANT4 toolkit이 사용되었다. $15{\times}15cm^2$ 이상의 빔 조사면 크기와 3% 이내의 선량 균일도 그리고 전체 선량의 5% 보다 낮은 빔 오염도를 기본적인 조건으로 설정 되었다. 조사면 크기는 쌍극자 자석에 의해서 빔의 각도를 기울여 원형으로 회전하면서 쌍극자 자석의 아래쪽에 위치한 산란판의 두께를 조정하여 최적화 하였다. 빔 스캐닝 각도와 산란판의 두께는 Monte Carlo 시뮬레이션 분석에 의해서 각각 $0.5^{\circ}$와 0.05 cm로 최적의 값을 나타내었다. 선량 균일도와 최대 조사면 크기를 만족하기 위하여 static과 scanning beam을 복합하는 기술을 이용한 새로운 빔 전달 방법을 소개하였다. 중앙 고정용 빔과 빔 축으로부터 $0.5^{\circ}$ 경사각을 가지고 회전하는 빔과 경사각이 없이 바로 들어오는 빔을 조합하여 선량균일도가 1.1%와 빔 조사면의 최대크기가 $15{\times}15cm^2$가 되는 것을 확인하였다. 빔 오염도는 $C^{12}$ 이온과 다른 입자들에 의해서 전달된 흡수선량의 비율로 나타내었다. 물등가 깊이(water equivalent depth) 5 cm에서 17 cm 사이에서의 빔 오염도는 전체 선량에서의 2.5% 미만임을 확인하였으며 이와 같은 결과를 바탕으로, 본 연구에서는 의생명 실험을 위하여 요구되는 빔 조건을 만족하는 노즐 구조를 설정할 수 있었다.
언어모델은 순차적으로 입력된 자료를 바탕으로 다음에 나올 단어나 문자를 예측하는 모델로 언어처리나 음성인식 분야에 활용된다. 최근 딥러닝 알고리즘이 발전되면서 입력 개체 간의 의존성을 효과적으로 반영할 수 있는 순환신경망 모델과 이를 발전시킨 Long short-term memory(LSTM) 모델이 언어모델에 사용되고 있다. 이러한 모형에 자료를 입력하기 위해서는 문장을 단어 혹은 형태소로 분해하는 과정을 거친 후 단어 레벨 혹은 형태소 레벨의 모형을 사용하는 것이 일반적이다. 하지만 이러한 모형은 텍스트가 포함하는 단어나 형태소의 수가 일반적으로 매우 많기 때문에 사전 크기가 커지게 되고 이에 따라 모형의 복잡도가 증가하는 문제가 있고 사전에 포함된 어휘 외에는 생성이 불가능하다는 등의 단점이 있다. 특히 한국어와 같이 형태소 활용이 다양한 언어의 경우 형태소 분석기를 통한 분해과정에서 오류가 더해질 수 있다. 이를 보완하기 위해 본 논문에서는 문장을 자음과 모음으로 이루어진 음소 단위로 분해한 뒤 입력 데이터로 사용하는 음소 레벨의 LSTM 언어모델을 제안한다. 본 논문에서는 LSTM layer를 3개 또는 4개 포함하는 모형을 사용한다. 모형의 최적화를 위해 Stochastic Gradient 알고리즘과 이를 개선시킨 다양한 알고리즘을 사용하고 그 성능을 비교한다. 구약성경 텍스트를 사용하여 실험을 진행하였고 모든 실험은 Theano를 기반으로 하는 Keras 패키지를 사용하여 수행되었다. 모형의 정량적 비교를 위해 validation loss와 test set에 대한 perplexity를 계산하였다. 그 결과 Stochastic Gradient 알고리즘이 상대적으로 큰 validation loss와 perplexity를 나타냈고 나머지 최적화 알고리즘들은 유사한 값들을 보이며 비슷한 수준의 모형 복잡도를 나타냈다. Layer 4개인 모형이 3개인 모형에 비해 학습시간이 평균적으로 69% 정도 길게 소요되었으나 정량지표는 크게 개선되지 않거나 특정 조건에서는 오히려 악화되는 것으로 나타났다. 하지만 layer 4개를 사용한 모형이 3개를 사용한 모형에 비해 완성도가 높은 문장을 생성했다. 본 논문에서 고려한 어떤 시뮬레이션 조건에서도 한글에서 사용되지 않는 문자조합이 생성되지 않았고 명사와 조사의 조합이나 동사의 활용, 주어 동사의 결합 면에서 상당히 완성도 높은 문장이 발생되었다. 본 연구결과는 현재 대두되고 있는 인공지능 시스템의 기초가 되는 언어처리나 음성인식 분야에서 한국어 처리를 위해 다양하게 활용될 수 있을 것으로 기대된다.
Phellinus igniarius의 화학합성배지 조성 및 배양조건의 최적화 실험을 실시하였다. 또한 곡물에서 담자균사체를 배양하는 고체재료 발효방법을 개발함으로써, 기능성식품의 이용 가능성을 검토한 결과는 다음과 같다. Phellinus igniarius의 최적 영양배지로는 malt extract 7.0%, bacto soytone 0.3%, yeast extract 0.2%의 조합이었다. 그러나 대부분의 버섯 영양배지에 공통으로 첨가되는 무기염류$(KH_2PO_4,\;0.046%,\;K_2HPO_4\;0.1%,\;MgSO_4{\cdot}7H_2O\;0.05%)$의 첨가는 균사생장에 별 영향을 미치지 않는 것으로 나타났다. 균사생장의 최적 배양온도는 $28^{\circ}C$였으며, 균사생장 최적 pH는 7.0으로 나타났다. 담자균사체의 대량배양 조건 실험을 실시한 결과, 냉침에 의해 최대수화에 도달한 곡물을 배양용기에 담고, 액체배양 후 균질화한 담자균사체를 곡물에 접종함으로써 접종초기 짧은 시간에 균사가 완전히 활착 되도록 할 수 있었다. 또한 균사 배양중기에 멸균 증류수를 첨가함으로써 균사의 활력을 유지시킬 수 있었다. Phellinus igniarius가 배양된 곡물에서 균사체량을 나타내는 glucosamine의 함량은 율무>보리>흑태>밀>메주콩>현미>수수>찹쌀의 순이었다.
다른 물질에 비해 많은 우수한 특성을 가지고 있는 CuInSe2(CIS)박막 태양전지는 많은 연구자들에 의해 개발되어 오고 있다. CIS의 대표적인 장점으로는 직접천이형 밴드갭, 높은 흡수계수, 열 안정화상태 및 p형으로의 전도성물질의 가능성 등 다양하다. 또한 간단한 구조를 이용하여 유리같은 싼 기판을 이용하기 때문에 저가형 태양전지로서 많은 각광을 받고 있다. CIGS태양전지는 CIS의 In 사이트에 Ga을 도핑함으로서 만들어지는데 밴드갭은 약 1.4eV이다. CIS박막을 만드는 많은 방법이 존재하나 구성원소로부터 최적화된 조성을 찾을수 있는 방법이 가장 중요한 요소 중의 하나로 인식되고 있으며, 이런점에서 증발법 및 스퍼터링법 등 같은 진공방식이 비진공방식에 비해 훨씬 간편하게 조성비를 맞출수 있다. 그 중에 스퍼터링법은 대면적 박막태양전지로의 가능성으로 비출어 볼때 산업화를 위한 좋은 후보군이 될 수 있다. Selenization을 하기전에 Cu-In-Se의 전구체 조합은 여러개의 타겟으로부터 동시 스퍼터링법이나 다층 전구체법을 사용하여 준비되는데 어떤 방법이 되던지 Se의 부가적인 공급은 불가피하다. 지금까지 많은 관련 연구의 대부분인 구조적, 조성비적 그리고 광학적인 특성평가에 집중되어 오고 있는데, 전기적특성평가의 경우는 면저항, 비저항 같은 간단한 결과 위주로 보고되어 오고 있다. 또한 캐리어농도와 이동도에 대한 보고가 있음에도 불구하고 이해되기에는 충분치 못한 면이 많다.본 발표에서는 태양전지 제조 전단계로서 소다라임유리기판(SLG)위에 Mo의 유무에 따라 CIS박막의 전기적인 특성 변화에 대한 내용을 담고 있다. 소다라임유리($2cm{\times}2cm$)를 기판으로 사용하여 아세톤-에탄올 용액에 초음파세척을 수행하고, Mo 후면전극을 DC 스퍼터링방식을 이용하여 증착을 한다. SLG와 Mo이 코팅된 SLG를 각각 RF 스퍼터 챔버에 이송한 후 수증기 제거를 위해 약 10분간 예열을 한다. 샘플에 대한 전기적특성은 Hall효과 측정장치에 의해 측정이 되며 전기전도도, 캐리어농도, 이동도 및 전도형에 대한 정보가 각각의 변수에 따라 조사된돠. 부가적으로 구조적, 조성비적인 특성을 SEM,XRD 및 EDX를 통해 조사를 하여 전기적 특성에 따른 관계성을 검토한다. SLG와 Mo가 코팅된 SLG위의 CIS박막은 전기적으로 약간 다른 특성을 보일 것으로 예측되며, 이러한 기대를 바탕으로 조성비가 이상적인 화학양론에 근접할 때 p형으로서 제시될 수 있다는 것을 보여줄 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.