• Title/Summary/Keyword: 조합 미분-대수방정식

Search Result 3, Processing Time 0.017 seconds

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(II) : Application (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(II) : 응용)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.176-184
    • /
    • 2000
  • Recently, it becomes a very important issue to consider the mechanical systems such as high-speed vehicle and railway train moving on a flexible beam structure. Using general approach proposed in the first part of this paper, it tis possible to predict planar motion of constrained mechanical system and elastic structure with various kinds of foundation supporting condition. Combined differential-algebraic equations of motion derived from both multibody dynamics theory and Finite Element Method can be analyzed numerically using generalized coordinate partitioning algorithm. To verify the validity of this approach, results from simply supported elastic beam subjected to a moving load are compared with exact solution from a reference. Finally, parameter study is conducted for a moving vehicle model on a simply supported 3-span bridge.

  • PDF

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(I) : General Approach (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(I) : 일반적인 접근법)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.165-175
    • /
    • 2000
  • In recent years, it becomes a very important issue to consider the mechanical systems such as high-speed vehicles and railway trains moving on elastic beam structures. In this paper, a general approach, which can predict the dynamic behavior of constrained mechanical system and elastic beam structure, is proposed. Also, various supporting conditions of a foundation support are considered for the elastic beam structures. The elastic structure is assumed to be a nonuniform and linear Bernoulli-Euler beam with proportional damping effect. Combined Differential-Algebraic Equations of motion are derived using multibody dynamics theory and Finite Element Method. The proposed equations of motion can be solved numerically using generalizd coordinate partitioning method and Predictor-Corrector algorithm, which is an implicit multi-step integration method.

  • PDF

Analysis for A Partial Distribution Loaded Orthotropic Rectangular Plate with Various Boundary Condition (다양한 경계조건에서 부분 분포 하중을 받는 이방성 사각평판 해석)

  • See, Sangkwang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.13-22
    • /
    • 2018
  • In this study, a governing differential equation for the bending problem of orthotropic rectangular plate is drived. It's exact solution for various boundary conditions is presented. This solution follows traditional method like Navier's solution or Levy's solution that transforms the governing differential equation into an algebraic equation by using trigonometric series. To obtain a solution by Levy's method, it is required that two opposite edges of the plate be simply supported. And the boundary conditions, for which the Navier's method is applicable, are simply supported edge at all edges. In this study, it overcomes the limitations of the previous Navier's and Levy's methods.This solution is applicable for any combination of boundary conditions with simply supported edge and clamped edge in x, y direction. The plate could be subjected to uniform, partially uniform, and line loads. The advantage of the solution is that it is the exact solution as well as it overcomes the limitations of the previous Navier's and Levy's methods. Calculations are presented for orthotropic plates with nonsymmetric boundary conditions. Comparisons between the result of this paper and the result of Navier, Levy and Szilard solutions are made for the isotropic plates. The deflections were in excellent agreement.