• Title/Summary/Keyword: 조합

Search Result 12,873, Processing Time 0.047 seconds

Isolation and Characterization of vasa Gene of Triploid and Diploid Human Lung Flukes (Paragonimus westermani) (폐흡충의 이배체와 삼배체 vasa 유전자 분석 및 특징)

  • Lee, Keun-Hee;Yu, Hak-Sun;Hur, Jae-Won;Yu, Sung-Suk;Choi, Sun-Hee;Park, Sang-Kyun;Lee, Sun-Joo;Chung, Dong-Il;Kong, Hyun-Hee;Ock, Mee-Sun;Jeong, Hae-Jin
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.462-469
    • /
    • 2007
  • In this study, we isolated, characterized, and compared the vasa homologous genes of diploid and triploid Paragonimus westermani and localized VASA homologous proteins in both lung fluke types. Open reading frames of Pw-vasa-2n and Pw-vasa-3n were of 1812 bp, and encoded deduced proteins of 622 amino acids with calculated molecular weights of 69.0 kDa and 68.9 kDa and pI's of 9.11 and 9.03, respectively. A comparison of these two VASA deduced protein sequences showed that only 6 of the 622 amino acids differed. The deduced sequences of Pw-VASA-2n and Pw-VASA-3n contained eight consensus sequences characteristic of the DEAD-box protein family and their N-terminal regions contained four arginine-glycine-glycine (RGG) motifs. These two lung fluke VASA-like proteins were more similar to those of other VASA proteins than to those of other DEAD-family proteins isolated from several organisms (planarian, zebra fish, mouse, and human). vasa homologous gene transcription and VASA protein expressions in triploid type lung flukes was slightly stronger than in the diploid type. Immunostaining showed that testes and a portion of the ovaries of both diploid and triploid lung flukes reacted strongly to anti-Pw-VASA antibody.

Up-regulation of CD11c Expression on Human Acute Myelogenous Leukemia Cells by Flt-3 Ligand (인간 골수성 백혈병 세포에서 Flt-3 수용체 리간드에 의한 CD11c 발현의 증가)

  • Xu, Qi;Kwak, Jong-Young
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1690-1697
    • /
    • 2009
  • CD11c and costimulatory molecules such as CD80 and CD86 express mainly in dendritic cells (DCs). In this study, we investigated the biologic effects of recombinant Fms-like tyrosine kinase-3 (Flt-3) ligand on the expression of DC surface markers, including CD11c in leukemia cell lines, such as KG-1, HL-60, NB4, and THP-1 cells. The expression of the Flt-3 receptor was found in NB4 and HL-60 cells, as well as KG-1 cells, but not in THP-1 cells. When KG-1 cells were cultured in a medium containing Flt-3 ligand or granulocyte macrophage-colony stimulating factor (GM-CSF) plus tumor necrosis factor (TNF)-$\alpha$, cell proliferation was inhibited and the expression levels of CD11c, major histocompatibility complex (MHC)-I, and MHC-II were increased in the cells. Flt-3 ligand also increased the expression level of CD11c on HL-60 and NB4 cells, but not on THP-1 cells. In comparison with CD11c expression, the expression level of CD11b on KG-1 cells, but not on NB4 and HL-60 cells, was slightly increased by Flt-3 ligand. Flt-3 ligand induced phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and p38-mitogen-activated protein kinase (p38-MAPK) in KG-1 cells, and the up-regulation of CD11c expression by Flt-3 ligand in the cells was abrogated by PD98059, an inhibitor of MEK. The results suggest that Flt-3 ligand up-regulates DC surface markers on $CD34^+$ myelomonocytic KG-1 cells, as well as promyelocytic leukemia cells, and that the differentiation of the leukemia cells into DC-like cells by Flt-3 ligand is mediated by ERK-1/2 activity.

Secretory Expression System of Xylose Reductase (GRE3) for Optimal Production of Xylitol (Xylitol 생산에 최적화된 xylose reductase (GRE3)의 분비발현 시스템)

  • Jung, Hoe-Myung;Kim, Jae-Woon;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1376-1382
    • /
    • 2016
  • Xylitol is widely used in the food and medical industry. It is produced by the reduction of xylose (lignocellulosic biomass) in the Saccharomyces cerevisiae strain, which is considered genetically safe. In this study, the expression system of the GRE3 (YHR104W) gene that encodes xylose reductase was constructed to efficiently produce xylitol in the S. cerevisiae strain, and the secretory production of xylose reductase was investigated. To select a suitable promoter for the expression of the GRE3 gene, pGMF-GRE3 and pAMF-GRE3 plasmid with GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter for secretory production. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$, and $SEY2102{\Delta}trp1$/pGMF- GRE3 and $SEY2102{\Delta}trp1$/pAMF-GRE3 transformants were selected. In the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, the total activity of xylose reductase reached 0.34 unit/mg-protein when NADPH was used as a cofactor; this activity was 1.5 fold higher than that in $SEY2102{\Delta}trp1$/pAMF-GRE3 with ADH1 as the promoter. The secretion efficiency was 91% in both strains, indicating that most of the recombinant xylose reductase was efficiently secreted in the extracellular fraction. In a baffled flask culture of the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, 12.1 g/l of xylitol was produced from 20 g/l of xylose, and ~83% of the consumed xylose was reduced to xylitol.

Partial Purification of OsCPK11 from Rice Seedlings and Its Biochemical Characterization (벼 유식물에서 OsCPK11의 부분 정제 및 생화학적 특성 규명)

  • Shin, Jae-Hwa;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Calcium is one of the important secondary signaling molecules in plant cells. Calcium-dependent protein kinases (CDPK)-the sensor proteins of Ca2+ and phosphorylating enzymes-are the most abundant serine/threonine kinases in plant cells. They convert and transmit signals in response to various stimuli, resulting in specific responses in plants. In rice, 31 CDPK gene families have been identified, which are mainly involved in plant growth and development and are known to play roles in response to various stress conditions. However, little is known about the biochemical characteristics of CDPK proteins. In this study, OsCPK11-a CDPK in rice-was partially purified, and its biochemical characteristics were found. Partially purified OsCPK11 from rice seedlings was obtained by three-step column chromatography that involved anion exchange chromatography consisting of DEAE, hydrophobic interaction chromatography consisting of phenyl-Sepharose, and gel filtration chromatography consisting of Sephacryl-200HR. An in vitro kinase assay using partially purified OsCPK11 was also performed. This partially purified OsCPK11 had a molecular weight of 54 kDa and showed a strong hydrophobic interaction with the hydrophobic resin. In vitro kinase assay showed that the OsCPK11 also had Ca2+-dependent autophosphorylation activity. The OsCPK11 phosphorylated histone III-S, and the optimum pH for its kinase activity was found to be 7.5~8.0. The native OsCPK11 shared several biochemical characteristics with recombinant OsCPK11 studied previously, and both had Ca2+-dependent autophosphorylation activity and favored histone III-S as a substrate for kinase activity, which also had a Ca2+-dependence.

Effect of Sugar Kind Added in Tris-buffer on Acrosome Damage of Post-thaw Spermatozoa in Canine (Tris-buffer에 첨가되는 당의 종류가 동결.융해정자의 첨체 손상에 미치는 영향)

  • 유대중;공일근
    • Journal of Embryo Transfer
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 2003
  • The aim of this study was conducted to evaluate the effect of sugar kinds and combination of various sugars on acrosome damage of post-thaw spermatozoa in canine. The extender used in this study was Tris-citric acid extender (Tris-buffer) supplemented with 20% Egg-yolk, 8% glycerol, 1% Equex STM paste, and 70 mM sugars such as monosaccharide (fructose and xylose) and disaccharide(trehalose). To evaluate of sugar combination, the sugars supplemented in Tris-buffer were combined such as control (fructose, xylose, trehalose), two combinations (Fru+Tre, Fru+Xyl, Tre+Xyl) and three combinations (Fru+Tre+Xyl). The acrosome damage rate of post-thaw spermatozoa in Eosin B & Fast Green stain in Fruc+Tre was higher than those in fructose, trehalose, xylose, Fruc+Xyl, Tre+Xyl, Fruc+Tre+Xyl (83.0$\pm$5.6 vs. 82.3$\pm$3.1%, 81.7$\pm$2.1%, 72.0$\pm$2.0%; 80.3$\pm$4.5%, 76.7$\pm$3.8%, 81.0$\pm$5.6). The motility after CASA analysis in Fru+Tre was higher than those in Fru+Tre+Xyl, Tre+Xyl, Fru+Xyl, Xylose, Trehalose, Fructose(79$\pm$6 vs 75$\pm$3, 74$\pm$8, 71$\pm$11, 70$\pm$4, 66$\pm$15, 63$\pm$ 12%). However, the progressive motility after CASA analysis in Fru+Tre group was higher than those in Fru+Tre+Xyl, Tre+Xyl, Fru+Xyl, Xylose, Trehalose, Fructose (67$\pm$7, 64$\pm$3, 62$\pm$6, 61$\pm$8, 60$\pm$2, 57$\pm$13, 53$\pm$10%). The results indicated that the acrosome damage & progressive motility of post-thaw spermatozoa in 70 mM Fruc+Tre (two combination) following Eosin B & Fast Green stain and CASA analysis.

Development of Parthenotes Produced by Various Treatments in Bovine (활성화 처리에 따른 소 단위발생란의 발달)

  • 이성림;강태영;유재규;여현진;김세나
    • Journal of Embryo Transfer
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2001
  • Development of effective activation protocols is of great importance for improving the success of cloning and subsequent transgenic. Three methods for oocyte activation, including 5$\mu$M ionomycin (5 min) alone, ionomycin + 1.9 mM 6-dimetylaminopurine (DMAP, 3 hrs) and ionomycin + 10 $\mu\textrm{g}$/ml cycloheximide (CHX, 3 hrs) were compared for their effects of pronuclei (PN) formation, development, developmental velocity and ploidy of parthenotes to IVF control in bovine. In group of ionomycin + DMAP, the oocytes having more 3PN were significantly (P<0.05) higher than in groups of ionomycin alone and of ionomycin + CHX (45.5% vs. 0 and 0%, respectively). Activation with the ionomycin alone, ionomycin + DMAP and ionomycin + CHX resulted in cleavage rates of 30, 85.5 and 57.9%, respectively. The blastocysts rate of parthenotes activated by ionomycin + DMAP treatment was significantly higher (12.3%. p<0.05) than those of other treated groups. Chromosome analysis shows that ionomycin + DMAP treatment greatly enhances the incidence of chromosomal abnormality of the parthenotes. From the results, we may conclude that DMAP treatment to the oocytes accelerates developmental velocity resulting in both the higher incidence of chromosome abnormality and of PN formation, and strongly suggest that CHX combined with ionomycin is better than DMAP for the purpose of successful nuclear transplantation. Developmental velocity of parthenotes activated by ionomycin + DMAP treatment was significantly (P<0.05) faster than others.

  • PDF

Effect of Sodium Caseinate Hydrolysates on Angiotensin-I Converting Enzyme Inhibition Activity (Sodium Caseinate 가수분해물의 Angiotensin-I Converting Enzyme 저해효과에 관한 연구)

  • Lee, Keon-Bong;Shin, Yong-Kook;Baick, Seung-Chun
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.652-658
    • /
    • 2012
  • This study was carried out to identify the ACE (Angiotensin converting enzyme) inhibitory activity of casein hydrolysates for development of anti-hypertensive hydrolysates. Sodium caseinate was treated with six kinds of commercial proteases such as Flavourzyme, Protamex, Neutrase 1.5, Alcalase, Protease M, and Protease S for 8 h individually, and was then treated with the enzyme combination for 4 h at $45^{\circ}C$. The hydrolysate which had the highest ACE inhibitory effect was then hydrolysed successively with three digestive enzymes: pepsin, trypsin, and ${\alpha}$-chymotrypsin, at $37^{\circ}C$ for 4 h under conditions mimicking those of the gastrointestinal tract. UF (ultra filtration) treatment was applied to one of the secondary hydrolysates to determine ACE inhibitory activity. When sodium caseinate was hydrolysed by commercial proteases, the degree of hydrolysis (DH) showed 2.54 to 4.25% and after secondary hydrolysis, DH showed 4.30 to 5.22%. ACE inhibitory activity and $IC_{50}$ values decreased, and inhibition rates increased during hydrolysis. Protamex treatment showed the lowest $IC_{50}$ value ($516{\mu}g/mL$) and Flavourzyme hydrolysate showed the highest $IC_{50}$value ($866{\mu}g/mL$). As the first hydrolysate was treated with Flavourzyme, the ACE inhibitory activity increased. Neutrase hydrolysate had the highest activity with an $IC_{50}$ value ($282{\mu}g/mL$). When Neutrase plus Flavourzyme treatment was hydrolyzed by digestive enzymes, the $IC_{50}$ value ($597{\mu}g/mL$) was decreased statistically (p<0.05). As Neutrase plus Flavourzyme hydrolysate is treated by UF with MW cut-off 10,000, permeate showed $273{\mu}g/mL$ of $IC_{50}$ value, showed no difference, but retentate which has over MW 10,000 showed statistically different $IC_{50}$ value, $635{\mu}g/mL$ (p<0.05).

Influences of Feeding Seleniferous Whole Crop Barley on Growth Performance, Blood and Carcass Characteristics, and Tissue Selenium Deposition in Finishing Barrows (셀레늄함유 청보리 급여가 거세비육돈의 생산성, 혈액 및 도체특성, 조직 내 셀레늄 축적에 미치는 영향)

  • HwangBo, Soon;Jo, Ik Hwan;Kim, Guk Won;Choi, Chang Weon;Lee, Sung Hoon;Han, Ouk Kyu;Park, Tae Il;Choi, In Bae
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.828-834
    • /
    • 2012
  • The present study has been conducted to investigate the effects of feeding seleniferous whole crop barley (WCB) to finishing pigs on their growth performance, blood and carcass characteristics as well as on tissue selenium deposition. A total of 40 cross-bred barrows ((Landrace${\times}$Yorkshire)${\times}$Duroc) were allotted to five replicates of four treatments. Each replicate was arranged to 2 pigs per pen; the experimental period lasted for 6 weeks. The finishing pigs were fed diets containing 0.1 (non-seleniferous WCB as a control), 0.2, 0.4 and 0.6 ppm of selenium (Se) by supplementing the diets with seleniferous WCB. The isonitrogenous and isocaloric diets containing 5% non-seleniferous or seleniferous WCB were formulated. Feeding seleniferous WCB did not affect (p<0.05) the feed intake and BW gain. Total blood lipid concentration was significantly (p<0.05) decreased with increasing Se levels. Total blood cholesterol concentration for the control was significantly (p<0.05) higher than that for 0.4 and 0.6 ppm of Se treatments. Increasing the Se levels in WCB significantly (p<0.05) decreased blood triglyceride concentration; however, the levels increased immunoglobulin G and selenium concentrations. Feeding seleniferous WCB did not affect the carcass rate, backfat thickness and meat quality as well as yield grades. The Se concentration in the kidney, liver and loin were significantly (p<0.05) increased with increasing levels of seleniferous WCB. The results indicated that feeding seleniferous WCB may improve the blood characteristics related to lipid metabolism and thus, could produce selenium-fortified pork. Moreover, it is shown that the dietary optimal selenium level to depose selenium in porcine tissues by utilizing seleniferous WCB would be 0.4 mg of Se/kg of ration. Moreover, when 100 g of pork produced from pigs raised under such condition is served to consumers, it meets the minimum recommended daily requirements (40 ${\mu}g$) of dietary selenium proposed by the World Health Organization (1996).

Preblending Effects of Curing Agents on the Characteristics of Mechanically Deboned Chicken Meat (염지제 종류와 혼합에 따른 기계발골 계육의 가공 특성과 저장성)

  • Kang, Soo-Yong;Park, Ki-Soo;Choi, Yang-Il;Lee, Sang-Hwa;Auh, Joong-Hyuck
    • Food Science of Animal Resources
    • /
    • v.29 no.2
    • /
    • pp.220-228
    • /
    • 2009
  • This study was conducted to determine the preblending effect of curing agents on the characteristics of mechanically deboned chicken meat (MDCM), including the pH, water-holding capacity (WHC), and stability under refrigeration conditions. MDCM was preblended with different curing agents [NaCl, 0.75 or 1.5%; sodium tripolyphosphate (STPP), 0.25 or 0.5%; ascorbic acid, 250 or 500 ppm; sodium nitrite, 75 or 150 ppm] and were stored at $4^{\circ}C$ overnight. The preblending of NaCl was found to have improved the WHC and emulsion stability; STPP was found to have improved the pH, WHC, and emulsion stability; and ascorbic acid or sodium nitrite did not affect the pH, WHC, and emulsion stability. The addition of ascorbic acid or sodium nitrite, however, decreased the 2-thiobarbituric acid (TBA) and volatile basic nitrogen (VBN) values of the preblended MDCM through the antioxidizing properties. The mixing effects of different curing agents on MDCM were also evaluated with nine different conditions. Among the treatments, the mixture of NaCl and STPP improved the WHC and emulsion stability due to the increased solubility of salt-soluble protein in the preblended MDCM. The mixture of NaCl, STPP, and ascorbic acid increased the pH, WHC, and emulsion stability, but the mixture of NaCl, STPP, ascorbic acid, and sodium nitrite improved the WHC, emulsion stability, and redness of the surface color with improved storage stability due to the decreased VBN and TBA values. As a result, the mixture of 1.5% NaCl, 0.5% STPP, 500 ppm ascorbic acid, and 75 ppm sodium nitrite showed the best properties as curing agents for MDCM preblending.

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.