• Title/Summary/Keyword: 조파쇄

Search Result 15, Processing Time 0.026 seconds

An Experimental Study on Breaking Waves (쇄파 발생에 관한 실험적 연구)

  • 이동연;주성문;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • Breaking waves were generated in a 2-D flume. A piston-type wavemaker was operated in accordance with signals which consist of elementary harmonics with appropriate phase differences. These phase differences were estimated by using a linear wave theory so that wave crests were to be concentrated at the same position. The stroke of wavemaker was controlled to create plunging-type breaking waves. The signal with small amplitude could not generate breaking waves. In the case of moderate amplitudes, various breaking waves could be obtained. Most of breaking waves were spilling type. Only when the wavemaker was operated with appropriate amplitude, plunging-type breaking waves were generated. The parameters of breaking waves are the wave steepness and the frequency bandwidth. If the central frequency was low, breaking waves were not generated. Based on experimental data, we found that the wave height of breaking inception was H = 0.0113 gT$^2$. We also made computations by using a mixed Euler-Lagrangian scheme under the assumption of potential flow. The numerical results show good agreements with tank measurements.

  • PDF

Nonlinear Irregular Waves-current Interaction on Flow Fields with Wave Breaking around Permeable Submerged Breakwater (투과성잠제 주변에서 쇄파를 동반한 불규칙파-흐름장의 상호작용)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.39-50
    • /
    • 2018
  • In this study, the nonlinear interaction of irregular waves with wave breaking and currents around permeable submerged breakwater was investigated with the aid of olaFlow model which is open source CFD software published under the GPL license. The irregular wave performance of olaFlow applied in this study was verified by comparing and evaluating the target frequency spectrum and the generated frequency spectrum for applicability to irregular waves. Based on the applicability of this numerical model to irregular wave fields, in the coexistence fields of irregular waves and currents, the characteristics of wave height, frequency spectrum, breaking waves, averaged velocity and turbulent kinetic energy around porous submerged breakwater with the respect to the beach type and current direction versus wave propagation were carefully investigated. The numerical results revealed that the shape of wave breaking on the crown of the submerged breakwater and the formation of the mean flow velocity around the structure depend greatly on the current directions and the type of the beach. In addition, it was found that the wave height fluctuation due to the current direction with respect to the wave propagation is closely related to the turbulent kinetic energy.

Effect of the Oversowing and Other Seeding Methods on Growth , Yield and Crude Protein Yield of Alfalfa ( Medicago sativa L. ) (겉뿌림 및 다른 파종방법들이 Alfalfa의 생육과 수량 및 조단백질생산량에 미치는 영향)

  • Lee, Joung-Kyong;Seo, Sung;Kim, Ha-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.2
    • /
    • pp.84-89
    • /
    • 1991
  • This experiment was carried out to determine the effects of oversowing and other seeding methods (oversowing+ raking, oversowing+ raking+compaction, tillage+ broadcasting+ compaction and tillage + drilling+ compaction) on growth, dry matter and crude protein yield of alfalfa (Medicago satiua L.). The results obtained are summarized as follows:1. Soil pH and soil properties were improved by tillage.2. Establishment of alfalfa was increased with raking and compaction, and more by tillage than by oversowing(P

  • PDF

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model (LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

Instability of Plunging Breaking Wave Impact on Inclined Cylinder (경사진 실린더에 작용하는 플런징 쇄파 충격력의 불안정성 고찰)

  • Hong, Key-Yong;Shin, Seung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.187-192
    • /
    • 2007
  • Impact on cylindrical surface caused by plunging breaking waves is investigated experimentally. The breaking waves are generated in a wave flume by decreasing the wave maker frequencies linearly and focusing the generated wave components at one specific location. The breaking wave packets are based on constant wave steepness spectrum. Three inclination angles of cylinder are applied to examine the effect of contact angle between cylinder and front surface of breaking waves. Also, the effect of cylinder diameter on pressure distribution and its peak value is investigated by adopting three cylinders with different diameters. The longitudinal location of cylinder is slightly moved in eight different points to find out a probable maximum value of impact pressure. The pressures and total force on cylinder surface are measured by piezo-electric pressure sensors and 3-components load cell with 30kHz sampling rate. The variation of peak impact pressures and forces is analyzed in terms of cylinder diameter, inclination angle and location. Also, the pressure distribution on cylindrical surface is examined. The cylinder location and surface position are more important parameters that govern the magnitude and shape of peak pressures, while the cylinder diameter and inclined angle are relatively insignificant. In a certain conditions, the impact phenomenon becomes very unstable which results in a large variation of measured valves in repeated runs.

  • PDF