• 제목/요약/키워드: 조명 정규화

검색결과 84건 처리시간 0.021초

조명영향 분리 얼굴 고유특성 텍스쳐 부분공간 기반 얼굴 이미지 조명 정규화 (Face Illumination Normalization based on Illumination-Separated Face Identity Texture Subspace)

  • 최종근;정선태;조성원
    • 대한전자공학회논문지SP
    • /
    • 제47권1호
    • /
    • pp.25-34
    • /
    • 2010
  • 다양한 조명 환경에서 강인한 얼굴 인식 성취는 어렵다. 조명에 강인한 얼굴 인식을 위해서 보통 전처리 단계로 얼굴 이미지 조명 정규화를 수행한다. 기존 조명 전처리 기법들은 투영 음영을 효과적으로 처리할 수 없다. 본 논문에서는 조명 영향 분리 얼굴 고유특성 텍스쳐 부분공간에 기반한 새로운 얼굴 조명 정규화 기법을 제안한다. 조명분리 얼굴 고유특성 텍스쳐 부분 공간은 얼굴 텍스쳐 공간에서 조명 변화 영향이 분리된 부분공간으로 구축되기 때문에 얼굴 이미지를 이 부분공간으로 투영하여 얻은 얼굴 이미지는 조명 변화 영향이 최소화된 좋은 조명 정규화를 달성한다. 실험을 통해 본 논문에서 제안한 얼굴 조명정규화 기법이 표면 음영뿐만 아니라 투영 음영도 효과적으로 제거할 수 있으며, 좋은 얼굴 조명 정규화를 달성한다는 것을 확인하였다.

조명분리 고유얼굴 부분공간 기반 얼굴 이미지 조명 정규화 (Face Image Illumination Normalization based on Illumination-Separated Eigenface Subspace)

  • 설태인;정선태;기선호;조성원
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.179-184
    • /
    • 2009
  • 다양한 조명 환경에서 강인한 얼굴 인식은 어렵다. 조명에 강인한 얼굴 인식을 위해서 보통 얼굴 이미지 조명 정규화 전처리를 수행한다. 기존 조명 전처리 기법 중에 가장 효율적으로 알려진 비등방성 스무딩 기법에 의한 조명 정규화는 투영음영(casting shadow)은 제거할 수 없다. 본 논문에서는 고유얼굴로 부터 조명 영향 부분을 분리하여 조명이 분리된 고유얼굴 공간을 구하고, 얼굴 이미지를 이 부분공간으로 투영하여 투영음영을 포함한 조명 영향을 최소한 얼굴 이미지 조명 정규화 기법을 제안한다. 본 논문에서 제안한 기법의 효율성은 적용을 통해 확인되었다.

  • PDF

조명 환경에 강인한 얼굴인식 성능향상을 위한 Bilateral 필터 기반 조명 정규화 방법에 관한 연구 (A Study on Illumination Normalization Method based on Bilateral Filter for Illumination Invariant Face Recognition)

  • 이상섭;이수영;김중규
    • 대한전자공학회논문지SP
    • /
    • 제47권4호
    • /
    • pp.49-55
    • /
    • 2010
  • 조명 환경에 의해 발생하는 강한 그림자 영역은 반사 영상을 이용하는 얼굴인식시스템의 성능을 저하시키는 주요인으로써, 인식률을 향상시키기 위해서는 강한 그림자 영역과 얼굴의 특징 영역을 구분해 낼 필요가 있다. 한편 Bilateral 필터는 영상 화소 값의 비선형적인 조합을 사용하여 경계영역을 보존하면서도, 전체 영상을 평활화할 수 있는 특성을 갖는다. 따라서 Bilateral 필터의 특성은 레티넥스 기반 조명 정규화 방법에서의 조명을 추정하는 과정에 사용되는 평활화 필터에 적합하다. 이에 본 논문에서는 강한 그림자 영역을 효과적으로 제거하기 위한 Bilateral 필터 기반의 새로운 조명 정규화 방법을 제안한다. Bilateral 필터의 계수는 화소 간 근접성(proximity)과 불연속성(discontinuity)의 곱으로 설계하여, 추정된 조명 영상에서 강한 그림자 영역이 비교적 정확하게 보존되도록 한다. 제안된 방법의 성능은 PCA(Principle Component Analysis)를 이용하여 인식률을 측정하고, 두 가지 데이터베이스에 대해 기존의 조명 정규화 방법들과 비교하여 평가하였다.

선형모델을 이용한 방향성 조명하의 얼굴영상 정규화 (Normalization of Face Images Subject to Directional Illumination using Linear Model)

  • 고재필;김은주;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.54-60
    • /
    • 2004
  • 얼굴인식은 외관기반(appearance-based) 매칭기법으로 풀어야 할 문제 중의 하나이다. 그러나, 얼굴영상의 외관은 조명 변화에 매우 민감하다. 얼굴인식 성능을 향상시키기 위해서는 다양한 조명 아래에서 다양한 학습 데이타를 수집해야 하나, 실제로는 데이타 수집이 용이하지 않다. 따라서, 성능향상을 위해서 다양한 데이타를 학습시키는 것 보다 다양한 조건의 데이타를 정규화 하는 기법에 주목하는 것이 바람직하다. 본 논문에서는 방향성 조명 아래에서 취득한 얼굴영상을 정규화 할 수 있는 간단한 방법을 제안한다. 조명 문제는 얼굴인식 시스템에서 오류를 일으키는 가장 중요한 요인중 하나이다. 제안하는 방법을 ICR(illumination Compensation based on Multiple Linear Regression)이라 명명하였다. 본 방법에서는 다중회귀분석 모델을 사용하여 얼굴영상의 화소 밝기 갈 분포에 가장 잘 맞는 평면을 찾은 후 이 평면을 이용하여 얼굴영상을 정규화 한다. 제안하는 방법의 장점은 간단하고 실용적이며, 얼굴영상의 밝기 값 분포에 대한 평면 근사가 선형모델에 의해 수학적으로 정의된다는 점이다. 얼굴인식에서 제안하는 방법의 성능 향상을 보여주기 위해 공개 및 자체 구축 데이타 베이스에 대한 실험 결과를 제시한다. 실험 결과 두드러진 얼굴인식 성능 향상을 보여주었다.

유해물질검출을 위한 가우시안 모델 기반 조명 정규화 (Illumination Normalization using Gaussian Model for Detection of Hazardous Material)

  • 이재린;박영현;전병우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.148-149
    • /
    • 2018
  • 카메라 기술의 발달로 나노 단위의 유해물질 영상을 간단한 광학장치를 장착한 휴대폰을 사용해 손쉽게 획득할 수 있게 되었다. 하지만, 유해물질 영상 관찰을 위하여 실제 사용되는 현미경에 비하여는 영상 전역에 원치 않는 잡음이 현저하게 발생한다. 특히 대중적인 저가의 광학계를 사용할 경우, 광량이 불균등하게 조사됨에 따라 얻어진 유해물질 영상에 왜곡이 발생할 수 있는데 이로 인해 기존의 유해물질 농도 검출 알고리즘을 적용하는 경우 좋지 못한 결과를 얻을 수 있다. 따라서 영상 전체에 조사되는 불균형한 조명에 의한 영향을 최소화할 필요가 있으며, 이에 착안하여 본 논문에서는 가우시안 모델에 기반한 조명 정규화 방법을 제안한다. 이는 영상 전역에 발생한 불균형 조명에 대한 영향을 최소화하여 찾고자 하는 유해물질 영역의 경계 특성을 더욱 명확하게 할 수 있는 효과가 있다.

  • PDF

색상기반 주목연산자를 이용한 정규화된 얼굴요소영역 추출 (Normalized Region Extraction of Facial Features by Using Hue-Based Attention Operator)

  • 정의정;김종화;전준형;최흥문
    • 한국통신학회논문지
    • /
    • 제29권6C호
    • /
    • pp.815-823
    • /
    • 2004
  • 색상(hue) 기반 주목연산자와 조합누적투영함수(combinational integral projection function: CIPF)를 제안하여 조명변화에 강건하게 정규화된 얼굴요소영역을 추출하였다. 살색 필터를 도입하여 얼굴후보영역들을 추출하고, 거기에 색상과 대칭성에 기반한 주목연산자를 적용하여 조명변화에 강건하게 두 눈의 위치를 정확히 검출할 수 있도록 하였으며, 색상기반 눈 분산 필터로 눈을 검증하여 얼굴영역을 확인하였다. 또한, 색상과 밝기 성분을 조합한 조합누적투영함수를 사용하여 두 눈의 위치를 기준으로 조명변화나 수염의 존재유무에 둔감하게 눈썹 및 입의 수직위치를 구하고, 이를 바탕으로 정규화된 얼굴영역 및 그 요소영역을 추출하였다. AR 얼굴 데이터베이스[8]에 제안한 색상기반 주목연산자를 적용한 결과 기존 명도기반 주목연산자에 비해 약 39.3%의 눈 검출 성능향상을 보임으로써 조명방향 변화에 강건하게 정규화된 얼굴 및 그 요소영역을 일관성 있게 추출할 수 있음을 확인하였다.

운전자 졸음 인식 시스템 구현 (Implementation of Driver Fatigue Monitoring System)

  • 최진모;송혁;박상현;이철동
    • 한국통신학회논문지
    • /
    • 제37권8C호
    • /
    • pp.711-720
    • /
    • 2012
  • 본 논문에서는 운전자 졸음 인식 시스템의 구현 방법과 그에 따른 결과를 소개한다. 영상 입력 장치로는 시중에 판매되는 웹캠 카메라를 사용하였다. 얼굴 검출 방법으로는 Haar 변환 기법을 이용하였으며, 다양한 조명 환경에 강건하게 적응하도록 조명정규화를 수행하였다. 조명정규화를 거친 얼굴 영상은 특징값 추출에 용이하다. 조명정규화를 통한 눈 후보영역은 인체측정학 정보를 이용하여 후보 영역을 줄인 이후에 PCA와 Circle Mask의 혼합 모델을 적용했다. 위 방법을 통해 차량 내부의 복잡한 조명 환경 속에서 강건히 눈 영역을 추출한다. 검출된 눈 영역은 고해상도의 조명 정규화 영상과 간단한 연산을 통하여 졸음 여부를 판별한다. 졸음 상태가 1단계로 판단 될 경우에는 통합 모니터링 인터페이스에서 운전자에게 경고음을 울리며 2단계일 경우에는 CAN(Controller Area Network)를 통하여 안전벨트를 진동하게 함으로써 운전자에게 경고를 준다. 본 논문에서 제안하는 졸음 인식 시스템은 낮은 계산 복잡도를 만족하는 동시에 높은 인식률을 보여준다. 실험 결과 차량 내에서 97%의 인식률이 나타났다.

텍스처 기반의 눈 검출 기법 (Eye Detection Based on Texture Information)

  • 박찬우;박현;문영식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.315-318
    • /
    • 2007
  • 자동 얼굴 인식, 표정 인식과 같은 얼굴 영상과 관련된 다양한 연구 분야는 일반적으로 입력 얼굴 영상에 대한 정규화가 필요하다. 사람의 얼굴은 표정, 조명 등에 따라 다양한 형태변화가 있어 입력 영상 마다 정확한 대표 특징 점을 찾는 것은 어려운 문제이다. 특히 감고 있는 눈이나 작은 눈 등은 검출하기 어렵기 때문에 얼굴 관련 연구에서 성능을 저하시키는 주요한 원인이 되고 있다. 이에 다양한 변화에 강건한 눈 검출을 위하여 본 논문에서는 눈의 텍스처 정보를 이용한 눈 검출 방법을 제안한다. 얼굴 영역에서 눈의 텍스처가 갖는 특성을 정의하고 두 가지 형태의 Eye 필터를 정의하였다. 제안된 방법은 Adaboost 기반의 얼굴 영역 검출 단계, 조명 정규화 단계, Eye 필터를 이용한 눈 후보 영역 검출 단계, 눈 위치 점 검출 단계 등 총 4단계로 구성된다. 실험 결과들은 제안된 방법이 얼굴의 자세, 표정, 조명 상태 등에 강건한 검출 결과를 보여주며 감은 눈 영상에서도 강건한 결과를 보여준다.

조명 정규화 및 하이브리드 분류기를 이용한 계량기 숫자 인식 (Meter Numeric Character Recognition Using Illumination Normalization and Hybrid Classifier)

  • 오한글;조성원;정선태
    • 한국지능시스템학회논문지
    • /
    • 제24권1호
    • /
    • pp.71-77
    • /
    • 2014
  • 본 논문에서는 저조도 및 음영이 생기는 조명 환경하에서 성능이 개선된 계량기 숫자 인식 방법을 제안한다. 저조도 및 음영 문제를 해결하기 위해 LN(Local Normalization) 처리 기법을 이용한 조명 정규화를 수행한 후, 계량기 숫자 영역 검출과 3단계 계량기 숫자 분할이 이루어진다. 마지막으로 분할된 숫자 데이터를 분류하기 위한 하이브리드 숫자 분류기가 적용된다. 제안된 하이브리드 숫자 분류기는 역전파 신경망과 템플레이트 매칭의 연속 결합으로 이루어지고, 계량기 숫자 분류에 보다 강인한 휴리스틱 규칙에 의해 최종적으로 숫자를 분류한다. 저조도 및 음영 조명 환경하의 다양한 계량기 종류에 대해 직접 촬영하여 자체 제작한 계량기 이미지 데이터베이스에 기반한 실험을 통해 본 논문에서 제안한 숫자 인식 방법을 평가하고, 제안된 계량기 숫자 인식 방법이 효과적으로 잘 동작함을 확인하였다.

조명 정규화를 통한 정맥인식 성능 향상 기법 (A Method for Improving Vein Recognition Performance by Illumination Normalization)

  • 이의철
    • 한국정보통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.423-430
    • /
    • 2013
  • 최근 손등이나 손바닥, 손가락의 정맥 혈관 패턴정보를 이용하여 개인을 인증하는 기술은 훼손, 복제 및 위조가 불가능하다는 장점으로 인해 연구가 활발하게 진행 중이다. 정맥영상은 피부층과 내부 골격등에 의한 빛의 산란 및 불균일한 내부 조직 때문에 정맥 영역이 뚜렷하게 나타나지 않아, 영상처리 방법을 통해 정맥 영역을 정확하게 분리하는 것이 어렵다. 특히 한 장의 영상에서도 밝기가 균일하지 않아서 지역 영역 단위로 다른 이진 임계치를 사용함으로 인해 처리시간이 오래 걸리고 혈관의 불연속면이 발생한다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 조명 정규화 기반의 고속 정맥 영역 추출 방법을 제안한다. 본 연구는 기존의 방법에 비해 다음과 같은 장점을 가지고 있다. 첫째, 정맥영상의 불균일한 조명을 제거하기 위해 저역통과필터를 통해 조명 성분을 취득하고 이를 통해 조명성분이 균일한 영상을 얻었다. 둘째, 조명 정규화 영상으로부터 단일 임계치를 통해 얻어진 이진 영상의 처리를 통해 혈관 경로를 추출함으로써, 처리시간을 단축하였다. 실험을 통해 기존 방법들에 비해 혈관 영역 추출 정확도가 상승하고, 처리속도가 단축된 결과를 얻을 수 있었다.