• Title/Summary/Keyword: 조립하중

Search Result 172, Processing Time 0.028 seconds

접촉요소(Contact Element)를 적용한 나사체결부(Thread joint)의 구조해석

  • 구송회;이방업;조원만;이환규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.15-24
    • /
    • 1996
  • 로켓모타의 연소관은 구조적인 편의성 및 경량화를 위하여 도옴-실린더부와 실린더-노즐부에 나사체결방법을 많이 적용하고 있는데, 나사의 골부위에 집중응력이 발생하여 인장강도를 넘는 응력이 발생하는 경우가 있다. 본 연구에서는 나사의 골부위의 응력수준을 좀 더 정확히 예측하기 위하여 나사체결시 작용하는 조립 토오크에 의한 초기하중을 고려한 구조해석을 수행하였으며, 나사부위에 발생하는 응력이 항복강도를 초과하므로 정확한 해석을 위하여 탄소성해석을 수행하였다. 조립 토오크에 의한 초기하중은 나사체결 멈춤부에 음(-)의 접촉 간극을 부여하여 모델링하였으며, 조립 토오크의 크기는 나사체결 근접부에서 변형률을 측정하여 모사하였다. 해석결과 초기하중을 고려하여 구조해석을 수행하면 최대예상 작동압력에서 초기하중의 영향은 거의 나타나지 않았으며, 마찰계수를 감소시키면 최대응력이 감소하여 구조적 안전성이 증가할 것으로 판단된다.

  • PDF

Analysis of Bending Performance of Built-up Beam Headers (목재 조립보 헤더의 휨 성능 분석)

  • Jang, Sang Sik;Kim, Yun Hui;Park, Young Ran
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.118-125
    • /
    • 2007
  • To obtain design data for built-up beams used as headers in light-frame timber construction, three members of $2{\times}6$ ($38{\times}140 mm$), $2{\times}8$ ($38{\times}184 mm$), $2{\times}10$ ($38{\times}235 mm$) and $2{\times}12$ ($38{\times}286 mm$) were built up as specimens of bending tests. The bending strengths of built-up headers were obtained through bending tests of these specimens, and it was considered that span tables can be calculated for various loading conditions based on the bending strengths of built-up headers. The bending strengths of built-up headers were determined as the bending stresses at 10 mm deflection of specimens from the results of bending tests of built-up beam specimens. Span tables for built-up headers were considered to be obtained by assuming five loading conditions for headers used in exterior walls and two loading conditions for headers used in interior walls. Among these 7 loading conditions, 5 loading conditions applied to headers in exterior walls included dead loads, live loads and snow loads and 2 loading conditions applied to headers in interior walls included dead loads and live loads.

Parameter Study of Buckling Behavior of Steel Built-up Column (강재 조립 기둥의 좌굴 거동에 대한 매개변수 해석)

  • Kim, Jinyong;Kim, Sung Bo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.79-87
    • /
    • 2011
  • The parameter study of buckling behavior of steel built-up column under compression force is presented in this study. The shear deformation effects due to the bending moment and shear forces are considered for the H-shaped main members along the entire built-up column and batten member connecting double H-shaped main members. The parametric study is performed according to the length of the built-up column, the distance of the H-shaped main members and the number and type of cover plate for battens, respectively. The applicability of AISC design specification of normal and high tension bolted built-up column is investigated. The buckling loads for built-up columns are compared with those obtained from the analytic solution developed in this study, AISC specification, and finite element method based on the beam and plate element, respectively.

Computational Modelling to Predict the Welding Deformation in Steel Structures (용접변형예측을 위한 용접부 수치 모델링)

  • Park, Jeong-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.96-102
    • /
    • 2007
  • Welding deformation causes critical problems under construction and in use of steel structures by varying the magnitude of the steel structures and deteriorating mechanic strength. Existing method to construct steel structures in civil engineering needs preassembly process for a part of or the whole structures on a broad space to examine the size of structures inevitably varied in the process of welding (assembly process). It leads to waste of time, space and human efforts, worry of safety accidents with the characteristic of the work to be performed on a high place, and non-efficiency and non-economy by using such supplementary equipments as crane. This paper, to remove the needless preassembly process by pre-estimating welding deformation produced under construction of large steel structures, devises a method modeling welded part for applying the equivalence load method and examines the effects of welding sequence and self weight on welding deformation by the method.

  • PDF

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

Discussion on the Sealing Gap Behavior of Rocket Motor Connection with the Structural Design Parameters (추진기관 기밀체결부의 형상설계변수에 따른 기밀조립 갭의 영향평가)

  • Kim, Seong-eun;Ro, Young-hee;Hwang, Tae-kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.517-520
    • /
    • 2017
  • In this paper, we represented the structural design parameter effect on the sealing gap behavior of solid rocket motor case and nozzle connection under penetrated pressure through the sealing path between insulation rubber and the ablative FRP bonded on the inside convergent wall of nozzle. It is important to keep the good sealing capacity during all the combustion time of SRM. To achieve the crucial role of sealing system of SRM, designers must consider design factors for stable sealing clearance gap as the nearly unchanged initial design state as possible for sufficient compression rate of O-ring under sealing gap pressure.

  • PDF

A Study on the Estimation of Ultimate Bearing Capacity of Granular Group Piles (조립토 군말뚝의 극한지지력 평가에 관한 연구)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.143-162
    • /
    • 1998
  • In the present study, a procedure to predict the depth from the ground surface to the center of bulging failure zone in each of the square granular group piles under a rigid mat foundation is proposed. This analytical procedure is established on the basis of the conical modeling of bulging failure shape and the replacement ratio of soft foundation soils. considering the effect of a share of procedure to estimate the ultimate cylindrical pressure in the area reinforced with granular piles and the ultimate bearing capacity of each of granular piles in group. This analytical procedure is also established on the basis of the pre-determined depth to the zone of bulging failure and an iterative solution technique. Finally the analytical procedures proposed in this study are verified by analyzing the results of 3D finite element analyses, and the predictions of ultimate bearing capacity of granular piles are compared with the results obtained from the tests, empirical equation and 3D finite element analyses.

  • PDF

Structural Integrity Evaluation of Nozzle Assembly using Acoustic Emission Technique (음향방출법을 응용한 노즐 조립체의 구조건전성 평가)

  • 설창원;이기범
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.32-39
    • /
    • 2006
  • An acoustic emission technique was applied to the structural strength test for the structural integrity evaluation of the nozzle assembly. These AE results were compared with data from the strain gages and displacement transducer. NDT using X-ray technique was performed to improve the test reliability before and after each test. In this structural integrity evaluation of the nozzle assembly, the internal crack initiation in the structure could not be precisely revealed by the strain and displacement results but the location and load level of the initiated crack could be precisely evaluated by using AE technique. From this test, it was proven that some new cracks can be generated in composite liner of nozzle assembly under the unexpected load due to interference between obturator and nozzle and these can be a cause of the unexpected abnormal failure.

Fatigue Safe Life Evaluation of Rotating Swashplate of Helicopter Main Rotor Control System (헬리콥터 주로터 조종 시스템 회전형 스와시플레이트 피로 안전수명 평가)

  • Kim, Dong-Chul;Lee, Pan-Ho;Kang, Shin-Hyun;Choi, Young-Don;Kim, Tae-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • The main rotor control system is an important structural part of a helicopter that manages the thrust and control force of the helicopter. The main rotor control system consists of a swashplate assembly, scissor assembly, pitch rod assembly, guide, etc. The main rotor control system must endure various loads, such as the thrust and control force, and must meet the optimized fatigue safety life. The rotating swashplate is an important structure influenced by the pitch rod load and rotating scissor load. In this paper, the accuracy of a result about the rotating swashplate part of the main rotor control system is proven through comparison between fatigue test and FEM results. Based on this result, we estimate the lifetime and deduce the fatigue safe lifetime.

ABAQUS를 이용한 O-링 밀봉 부의 설계민감도 분석기법 연구

  • 이방업;구송회;조원만;오광한
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.3-11
    • /
    • 1996
  • 본 연구는 고체 추진기관의 각종 밀봉 부에 많이 사용되는 O-링의 설계시 고려되는 각종 형상인자의 변화에 따른 O-링의 거동과 응력 상태를 분석하여 설계 최적조건을 찾기 위한 내용을 다루고 있다. 조립 부의 내외경과 조립 공차, 챔퍼길이와 각도, 조립 홈의 외경, 깊이, 폭, 구성반경, O-링의 내경과 선 직경 등의 설계 변수에 의한 조립부 형상과 재료의 물성치, 유한요소 선택 및 요소 분할, 경계조건, 하중조건, 접촉부 정의 등을 MSC/PATRAN3의 $PCL^{[1]}$/로 프로그래밍 하여 설계변수에 의한 결과 분석을 손쉽게 수행할 수 있도록 시도하였다 고무의 Hyperelastic 물성치는 문헌상의 자료$자료^{[2]}$에 제시된 Ogden 상수를 사용하였으며 추후에는 인장시험, 순수전단시험, 이 축 인장시험을 통해 실험적으로 측정$^{[3]}$ 하여 적용할 예정이다. 고무의 대변형, 대 변형률을 고려한 비선형 응력해석은 MSC/PATRAN3의 Advanced FEA 모듈과 ABAQUS 5.5를 사용하였다. 본 연구에서의 해석결과를 설계변수들의 영향을 비교 분석하는데 사용하였으나 그 정확도가 입증된 상태는 아니며 추후 실제 조립 및 수압시험을 통해 평가할 예정이다.

  • PDF