• Title/Summary/Keyword: 조기 강도

Search Result 586, Processing Time 0.023 seconds

An Experimental Study on the Early Compressive Strength Improvement of Cement Mortar Mixed with Blast Furnace Slag using Powdered Stimulants (분말형 자극제를 이용한 고로슬래그미분말 혼입 시멘트 모르타르의 조기 압축강도 향상에 관한 실험적 연구)

  • Lee, Kang Jin;Kim, Jin Hyoung;Park, Ki Bong;Lee, Han Seung
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.115-122
    • /
    • 2012
  • Based on previous research and existing literature, this study examines the development of admixture, which increases the early concrete strength (1 and 3 day) by mixing blast furnace slag cement and concrete stimulant. The research on early strength development of concrete is necessary in dealing with the drawbacks of slow early strength concrete on site and to shorten the construction time. The study confirmed that when a high alkaline mortar mixture is mixed with blast furnace slag, the early strength of admixture exceeds that of ordinary portland cement (OPC). The use of calcium chloride ($CaCl_2$) promotes hydration of cement at low temperature and show similar strength as the blast furnace slag admixture. Although calcium chloride seems economically advantageous, it causes steel corrosion and its use in concrete should be further studied in-depth.

Strength Properties of Concrete According to Types of High Early Strength Cement and Curing Method (조강형 시멘트의 종류 및 양생방법에 따른 콘크리트의 강도특성)

  • Chang, Chun-Ho;Lee, Wang-Sup;Jung, Yong-Wook;Chung, Youn-In
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.76-84
    • /
    • 2017
  • This study selected a method which uses high early strength cement as a way to reduce the curing time and curing energy source of concrete secondary products and reviewed the improvement in the initial strength of concrete secondary products setting the target strength of the concrete capable of removing the form to 15MPa and the curing time to 6 hours. As a result of the test, the only specimen which achieved the form removal strength of 15 MPa only through atmospheric curing within the target curing time of 6hours was ACC-100, and the specimens of TRC-100 and TRC-50 satisfied the values of 6 hours and 15MPa through steam curing. However, we could see that it was difficult to secure workability in the case of the specimen of ACC-100 due to its high rapid setting property and a retarder such as anhydrous citric acid was required to be used to improve the workability. When we look into the pattern following changes in the water to binder ratio, while, in the case of stream curing, OPC-100, TRC-100, and TRC-50 were all found to satisfy achievement of the form removal strength within 6hours as the water to binder ratio decreased, in the case of atmospheric curing, TRC-100, and TRC-50 achieved 15MPa within 12hours.

Properties of Strength Development of Concrete at Early Age Using High Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 치환한 콘크리트의 조기강도 발현 특성)

  • Ha, Jung-Soo;Kim, Han-Sic;Lee, Young-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 2018
  • Cement industries are considered key industries for reducing carbon emissions, and efforts are off the ground to reduce the use of cement in the concrete sector. As a part of this effort, research is off the ground to utilize a large amount of industrial by-products that can be used as a substitute for a part of cement. Concrete using industrial by-products has advantages such as durability, environment friendliness and economical efficiency, but there are problems such as retarding and early-age strength deterioration. Therefore, this study aimed to reduce the use of cement and solve the problem of early-age strength deterioration while using fly ash, which is an industrial by-product. Accordingly, it was confirmed that the strength was improved at all ages irrespective of curing temperature by accelerating the hydration reaction by using high fineness cement. Subsequently, high fineness cement was partially replaced with fly ash and the strength development characteristics were examined. As a result, it was possible to exhibit strength equal to or higher than ordinary portland cement even at the early age. Also, it was confirmed that even when the fly ash is replaced by 30%, it is possible to shorten the time for dismantling the forms of vertical and horizontal members.

A Study on the Hydration and Strength of Accelerated Curing Concrete (가열양생(加熱養生) 콘크리트의 수화(水和) 및 강도(强度)에 관한 연구(研究))

  • Shin, Hyun Mook;Jeon, Chan Ki;Nam, In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.203-212
    • /
    • 1987
  • The hydration and strength of concrete are affected by curing conditions, especially curing temperature. In this paper, the hydration temperature of heated curing concrete specimen are measured by thermo-couples instead of conduction calorimeter, and strengths of concrete are tested. The results of this study show that the compressive strengths of concrete are especially dependent on the curing temperature. And the strength results of concrete agree approximately with the results of approach to the hydration process of cement concrete.

  • PDF

A study on the Effects of Superplasticizres on the Engineering Properties of Plain Concrete(II) (고성능감수제가 콘크리트의 공학적 특성에 미치는 영향(II))

  • 박승범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.74-86
    • /
    • 1986
  • 유동화콘크리트의 공학적 특성에서 시간-의존거동을 확인하기 위하여,나프타렌 설폰산염 폴리머 고축합물인 Rheobuild 1000과 메라민 설폰산염 고축합물인 NP-20의 고성능감수제를 사용한 유동화콘크리트와 보통콘크리트를 제조하여 비교.고찰을 행하였으며, 고성능감수제의 종류 및 함량이 콘크리트의 공학적 특성에 미치는 영향을 구명하기 위하여 재령 3일, 14일, 28일, 60일, 90일, 180일의 압축강도를 측정, 조기 및 장기압축강도를 조사하였고, 인장강도 및 탄성 변형에 미치는 영향을 조사하였다. 또한 습윤 및 에어콘디션의 양생조건하에서 시간의 경과에 따른 건조수축 및 크리이프 변형을 조사.분석함으로써 유동화콘크리트의 시간-의존거동을 확인하였다. 실험결과, 사용 고성능 감수제의 종류에 따라 차이는 있으나, 고성능 감수제의 사용은 일반적으로 워커빌리티 성능을 개선하고 압축 및 인장도를 크게 향상시키며, 탄성계수는 보통의 콘크리트에 비하여 높게 나타났다. 또한 건조수축 및 크리프 변형의 감소에 매우 양호한 결과를 나타내어 앞으로 건설용 용도로써 효과적인 것으로 판단되었다.

  • PDF

An Experimental Study on Strength Development of Concrete Including Fly Ash (석탄재가 혼입된 콘크리트 강도발현에 관한 연구)

  • 배성용
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.66-71
    • /
    • 2000
  • The main objectives of this study are to carried out in order to evaluate strength development of Fly Ash concrete containing various amounts of Fly Ash such as 0%, 10%, 20% and 30%. The experimental variables included in this test program consist of content of Fly Ash, concrete strength and chemical activation. As Fly Ash increases, air content, strength development of concrete and slump loss of normal strength concrete were gradually decreased. The inclusion of Na$_2$SO$_4$increased the short-term strength of concrete that contains Fly Ash. In addition, the strength development of concrete that contains Fly Ash and Na$_2$SO$_4$were improved.

  • PDF

Shear-tendon Rupture Failure of Concrete Beams Prestressed with FRP Tendons (FRP를 사용한 프리스트레스트 콘크리트 보의 전단 텐던 파괴)

  • 박상렬
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.133-141
    • /
    • 1998
  • FRP는 비부식성 및 고강도의 뛰어난 성질에도 불구하고 콘크리트 구조에 사용하는 데 있어서 소성의 결핍 및 낮은 전단강도와 같은 몇가지의 기술적인 단점을 가지고 있다. 특히 이 두가지 성질은 프리스트레스트 콘크리트보에 있어서 다우얼 작용이 일어나는 전단균열 단면에서와 같이 인장과 전단의 복합효과가 일어날 때 텐던의 조기 파괴를 일으키기 쉽다. 본 논문에서는 탄소 FRP연선을 사용한 프리스트레스트 콘크리트보에서의 텐던파열에 의한 전단파괴를 연구하였다. 전단시험 결과에 의하면 전단 텐던 파괴는 FRP를사용한 프리스트레스트 보에서만 일어나는 유일한 파괴형식으로 보의 전단강도를 저감시키는 것으로 확인되었다. 이러한 전단 텐던 파괴 과정을 규명하기 위하여 다우얼 시험을 실시하고 최초로 실용적인 시험장치 및 과정을 소개하였다. 다우얼 시험 결과에 의하면 FRP 연선은 인장과 전단의 상호작용에 의해 Tsai-Hill 파괴 기준에 따라 파괴되었다.

Effect of Early Compressive Strength Development with Blast Furnace Slag Using Various stimulants Mortar. (각종자극제가 고로슬래그 미분말 혼입 모르타르의 초기재령 압축강도 발현에 미치는 영향)

  • kim, Jin-Hyoung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.57-58
    • /
    • 2011
  • In the experiment, we add to NaOH, Ca(OH)2 and Calcium Hydroxide as the Slag stimulus also mixed the cement stimulus such as NaSCN, TEA and CaCl2 for improving compressive strenth of concrete which added the Blast Furnace Slag Powder at 1 and 3 days. In the result of strength test, It showed that 2percentage of activator 1 and 5percentage Ca(OH)2, 1percentage of activator 3 and 5percentage of Ca(OH)2 are higher than 100 percentage OPC.

  • PDF

Compressive Strength Development Properties of Concrete using Sodium based Accelerating Admixtures (나트륨계 기반 조강형 혼화제를 사용한 콘크리트의 압축강도발현 특성)

  • Song, Yeong-Chan;Lee, Tae-Gyu;Kim, Yong-Ro;Seo, Chi-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.259-266
    • /
    • 2018
  • In recent years, the early strength of concrete is important in order to shorten the time of form removal at the construction site. The purpose of this study is to analyze the moment of form removal as investigating the amount of cement contents and the physical properties and strength of the concrete according to types of admixture in the curing temperature of $10^{\circ}C$ for concrete of 21 to 27 MPa. As a result, it was found that compressive strength of concrete could not be secured 5 MPa by 36 hours even if the amount of cement contents were increased to $360kg/m^3$ with plain admixture. Also, it was confirmed that the strength improvement rate was excellent when using the accelerating agent with polycarboxylic acid type, and the moment of compressive strength of 5 MPa was estimated at 30 hours.

A Hardening and Strength Properties of Magnesium Phosphate Mortars for Rapid Repair Materials (급속 보수용 마그네슘 인산염 모르타르의 경화 및 강도특성)

  • Oh, Hongseob;Lee, Inhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.103-110
    • /
    • 2019
  • Damage to the pavement system due to various causes will be required rapid repair work for reopening the vehicle traffic. The magnesium oxide phosphate composite(MPC) has a short curing time and is capable of early compressive strength development, is suitable for rapid repair materials. The aim of this study was to evaluate the hardening and compressive strength characteristics of MPC according to the water-binder (W / B) ratio and magnesium-phosphate(M / P) ratio in order to develop repair materials consisted with light burned magnesia and potassium dihydrogen phosphate. In order to ensure the workability in the field application, the difference of mechanical properties according to standard sand and ordinary sand and performance of retards were evaluated. The mix proportion with W/B ratio was about 35% and the M/P ratio was about 1.0 ~ 1.2 has a superior perfomance with strength and hardening condition. Especially, the strength of composite at only 1 day curing with W/B ratio of 0.35 and the M/P ratio of 1.2 was shown the higher than 25.0 MPa. Boric acid as a retarder was found to be suitable for ensuring the working time, and the purity of magnesium oxide was about 90 ~ 95%, which is effective for ensuring curing time and strength.