• Title/Summary/Keyword: 조기강도콘크리트

Search Result 194, Processing Time 0.031 seconds

A Study on the Early Evaluation of Concrete Strength by Hot Water Curing Method (콘크리트 강도(强度)의 조기판정(早期判定)에 관한 연구(研究))

  • Shin, Hyun Mook;Jeon, Chan Ki;Suh, Kwang Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.61-71
    • /
    • 1987
  • Accelerated strength testing is a available method for quality control of concrete. This paper presents the improved hot water ($70^{\circ}C$) methods and discusses how these methods can be adapted for predicting 28 day strength. The strength results have been analyzed by statistical techniques and correlation between early and 28 day strength are showed by prediction line. The test results show that the methods proposed in this paper are usable to predict the potential quality of concrete with low variation and good relationship between two strengths.

  • PDF

A Study on Strength Development and Drying Shrinkages of Recycled Concrete (재생콘크리트의 강도발현 및 건조수축 특성연구)

  • 이진용
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.217-223
    • /
    • 1997
  • 재생콘크리트의 압축강도와 휨강도는 재생골재의 혼입량이 증가할수록 감소하였으며 플라이애쉬를 혼화재로 사용할 때 그 양이 증가할수록 재생콘크리트의 조기 압축강도는 떨어졌다. 골재원에 따른 압축강도는 재생골재의 혼입량이 적을수록, 양생기간이 길어질수록 증가하엿으나, 전반적으로 비슷한 강도변화의 경향을 보여주고 있다. 재생콘크리트의 휨강도 발현은 보통 콘크리트와 비슷하나, 휨강도에 대한 압축강도비는 보통 콘크리트에 비하여 낮았다. 재생콘크리트의 건조수축은 재생골재의 혼입량이 증가할수록 증가하였으며 , 특히 재령2주와3주사이에 건조수축량이 보통 콘크리트에 비해 월등히 높았다.

A Study on the Optimum Mix Proportion for Early Strength of Concrete in the Upper Layers of High Rise Building (Part I - 40MPa) (초고층 빌딩용 상층부 콘크리트의 조기강도 확보를 위한 최적배합 도출에 관한 연구 (Part I - 40MPa를 중심으로))

  • Jeon, In-Ki;Park, Yong-Kyu;Lee, Joo-Hun;Choi, Myung-Hwa;Yoon, Gi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.321-324
    • /
    • 2008
  • Recently increasing interest in high-rise building around the world for more than 100 floor, the trend is the increasing use of high-strength and high-flowable concrete so as of productivity improvements and cost savings to improve the performance of the early strength development. This study is to reach the optimal combination by reviewing the performance of high-rise building which is required. The results show that $30.0{\sim}32.5%$ of W/B, $155㎏/m^3$ of unit water and FA10+SP10 is best properties for early strength of concrete.

  • PDF

Suggestion for Non-Destructive Testing Equation to Estimate Compressive Strength of Early Strength Concrete (조기강도 콘크리트의 압축강도 추정을 위한 비파괴검사 실험식의 제안)

  • Lee, Tae-Gyu;Kang, Yeon-Woo;Choi, Hyeong-Gil;Choe, Gyeong-Choel;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • In construction field, it used various technique for concrete formwork. Part of them, non-destructive test has been conducted to estimate a compressive strength of concrete easily such as rebound method and ultrasonic pulse velocity method etc. Former research has recommend proposed equation based on experimental data to investigate strength of concrete but it was sometimes deferent actual value of that from in field because of the few of data in case of early strength concrete. In this study, an experiment was conducted to analyze strength properties for early strength concrete using cylinder mold and $1,000mm{\times}1,000mm{\times}200mm$ rectangular specimen. And compressive strength of concrete was tested by non-destructive test, and calculated by the equation proposed former research. As a result, the non-destructive test results showed approximately 70 percent of the failure test value for all conditions, and worse reliability was obtained for high strength concrete samples when the ultrasonic pulse velocity method was used. Based on the scope of this study, the experimental equation for estimating compressive strength of early strength concrete from 24MPa to 60MPa was proposed.

An Experimental Study on the Properties of Early-Strength for high performance Concrete according to Mix Design (배합설계 조건에 따른 고성능 콘크리트의 조기강도 발현특성에 관한 연구)

  • Choi, Sumg-Woo;Yoo, Jong-Su;Beak, Chul-Woo;Kim, Jeong-Sik;Ryu, Deung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.231-232
    • /
    • 2009
  • In this study, the properties of early strength development for high performance concrete according to mix design were examined In particulara, we examined the mineral addmixture influence for mix design.

  • PDF

Mechanical and Physical Performance of Ultra Rapid Hardening Roller Compacted Concrete for Pavement (조기강도 발현 롤러다짐 콘크리트의 물리.역학적 성능 평가)

  • Kim, Joon-Mo;Kang, Hee-Byung;Lee, Sang-Woo;Lee, Su-Jin;Park, Sung-Ki;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.283-284
    • /
    • 2010
  • This study was evaluated the mechanical and physical performance of ultra rapid hardening roller compacted concrete. Mix proportion were compared with mix proportion without latex about mechanical and physical performance. The test results showed that mix proportion with latex presented excellent performance due to pore filling effect of latex for unification behavior.

  • PDF

The Characteristics of Strength Development and Curing Cycle of the Steam Cured Concrete (증기양생 콘크리트의 양생온도주기와 강도발현 특성)

  • Kim, Kwang-Don;Kim, Choon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.63-71
    • /
    • 2010
  • This paper is about a research of steam curing which is one of the curing methods for accelerating the early-age strength of pre-cast concrete. With cylinder mold and mock-up specimen, the research was executed to study the best cycle of steam curing temperature through quantifying cycle of steam curing and maximum temperature, while the required strength is developed under the early-age. Moreover, causes and measurements for the high temperature of concrete, which is due to the steam curing, and the crack, which occurs when removing steel form, are stated. Ultimately, the economical method of producing, which satisfies early-age strength development and quality assurance while manufacturing PC structure, is stated.

An Experimental Study on the Early Strength Prediction of Concrete by Maturity Method (적산온도법을 이용한 콘크리트 조기강도 예측에 관한 실험적 연구)

  • Kwon, Hae-Won;Bae, Yeoun-Ki;Kim, Suk-Il;Jee, Suk-Won;Lee, Jae-Sam;Song, In-Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.753-756
    • /
    • 2008
  • Recently, construction work period reduction is a very important topic of construction business circles. Because that is just big cost reduction. There is an important part of construction to decide the removal time of form. For prediction strength for removal form, P type schmidt hammer method and maturity method is used that. In case early strength prediction of maturity method, that is problem. Because setting duration of concrete is not proper considering. So this experimental study is a coefficient(A) of maturity method.

  • PDF

An Experimental Study on the Early Strength Development Properties of Concrete According to Curing Condition and Used Materials (사용재료 및 양생조건에 따른 콘크리트의 조기강도발현 특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Lee, Ji-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.721-729
    • /
    • 2008
  • The purpose of this study is to investigate the engineering properties of concrete for the early strength development. As a result of reviewing it by establishing each experimental factor and level, the cement had more excellent quality performance in CHC and HESPC than OPC. This study has shown that the PC series admixture was more excellent in side of elapsed time (aging) and early strength development than PNS series admixture. In addition, there was much difference according to the curing temperature, but the early strength development showed the considerable vulnerability in curing temperature below $12^{\circ}C$. To satisfy the strength requirements of 5 MPa/18 hr this study has shown that it needed the curing temperature over $17^{\circ}C$ to the minimum in OPC, over $14^{\circ}C$ in CHC, and over $11^{\circ}C$ in HESPC. On the other hand, as to the strength properties according to W/C, the less W/C was, the more strength development was excellent. If this study is to be used in construction filed on a basis of this result, this researcher is considered as possible of the economic execution of construction by advancing the early strength and by the reduction of construction cost according to shortening construction duration.

Study on Early Development Properties of Concrete Strength in each Strength Level (강도 수준별 콘크리트 조기강도 특성에 관한 연구)

  • Jeong, Jae-Gwon;Choi, Yun-Wang;Lee, Kwang-Myong;Kim, Jee-Sang;Moon, Jae-Heum;Park, Man-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.413-414
    • /
    • 2009
  • In this study, the concrete being used for normal and high strength concrete section was manufactured to develop and set up optimized concrete materials for domestic ready-mixed concrete. And the domestic and overseas level of early strength manifested was compared and reviewed.

  • PDF