• Title/Summary/Keyword: 조건부 분포

Search Result 138, Processing Time 0.031 seconds

Nonstationary Intensity-Duration-Frequency Curves under Climate Change (기후변화를 고려한 비정상성 I-D-F 곡선 작성)

  • Jeung, Se Jin;Lee, Suk Ho;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.94-94
    • /
    • 2015
  • 기후변화와 변동으로 인한 기상이변이 갈수록 심각해지고 발생 빈도도 잦아짐에 따라 현재의 배수관련 사회기반시설(Drainage Infrastructure)이 이런 문제에 대처할 준비가 잘되어 있는지에 대해 의문점이 제기되고 있다. 현재의 배수관련 사회기반시설의 설계는 이른바 정상성(stationarity)이라는 가정 하에 강우의 강도(Intensity), 지속기간(Duration), 빈도(Frequency)의 관계를 나타내는 I-D-F 곡선을 주로 이용하기 때문에 기후변화로 인한 극치사상(extremes)의 유의한 변화를 나타낼 수가 없다는 한계점을 가지고 있다. 그러나 기후변화는 극한기후(climatic extremes)의 특성을 비정상성(nonstationarity)이라 일컫는 개념으로 바꾸고 있기 때문에 배수관련 기반구조 설계(Drainage Infrastructuredesign)의 기본 가정의 하나인 강우 통계 매개변수의 정상성은 기후변화의 시대에는 더는 유효하지 않을 수 있다. 본 논문에서는 이러한 비정상성을 고려하여 조건부 GEV 분포를 이용하여 지속시간별 확률강우량 과비정상성 I-D-F 곡선식을 유도하였다. 또한, 분포형 홍수유출모형인 S-RAT(Spatial Runoff Assessment Tool)을 이용하여 강우강도의 증가가 설계 최대유량(design peak flows)에 미치는 영향을 분석하였다. 분석결과 지속기간별 차이는 있었지만 고빈도로 갈수록 전반적으로 현행 I-D-F 곡선이 실질적으로 극한강수를 과소평가하고 있으며 정상성 I-D-F 곡선 작성 방법이 기후변화의 배수관련 기반구조물의 능력설계에 적합지 않을 수도 있음을 제시하였다.

  • PDF

Stochastic Prediction of Storage Considering Uncertainty of Inflow and Application to Drought Mitigation (저수지 유입량의 불확실성을 고려한 저수량의 확률론적 예측 및 가뭄 대응을 위한 활용 방안)

  • Kwon, Minsung;Shin, Ji Yae;Jun, Kyung Soo;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.98-98
    • /
    • 2016
  • 본 연구에서는 유입량의 불확실성을 고려하여 미래 저수량을 확률론적으로 예측하였다. 월별 유입량을 표본으로 한 확률밀도함수를 핵밀도함수(kernel function)를 이용하여 추정하고, 추정된 확률분포로 월별 유입량을 모의 발생하였다. 모의 발생된 유입량을 통해 연속적인 조건부 확률을 산정하였고, 이의 누적확률분포(F(x))는 해당 저수량에 도달하지 못할 확률, 즉 실패확률을 의미하므로 1-F(x)로 해당 저수량 이상을 확보할 수 있는 확률을 산정하였다. 보령댐을 대상으로 분석한 결과 2016년 2월 말 저수량 27.8 백만$m^3$ 기준으로 3월부터 6월까지 정상용수공급환원 기준 저수량을 만족할 확률이 각각 2.3%, 12.5%, 24.2%, 33.5%로 나타났다. 지역적 가뭄에 대응하기 위해 하천유지용수 감량, 용수 대체공급, 자율 급수조정 및 금강-보령댐 도수로를 이용한 용수공급으로 20.6만$m^3/day$의 용수가 비축될 경우, 정상용수공급환원 기준 저수량을 만족할 확률이 10.2%, 40.3%, 73.8%, 78.7%로 용수비축의 효과가 크게 나타나는 것을 확인하였다. 저수량의 확률론적 예측을 통해 미래 저수량의 확률적 발생가능성을 추정할 수 있으며, 가뭄이 발생할 경우, 가뭄 대응효과를 정량적으로 나타낼 수 있어 가뭄 위험 상황 전달 및 용수공급조정 의사결정 시 활용할 수 있을 것으로 판단된다.

  • PDF

Probabilistic Modeling of Photovoltaic Power Systems with Big Learning Data Sets (대용량 학습 데이터를 갖는 태양광 발전 시스템의 확률론적 모델링)

  • Cho, Hyun Cheol;Jung, Young Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.412-417
    • /
    • 2013
  • Analytical modeling of photovoltaic power systems has been receiving significant attentions in recent years in that it is easy to apply for prediction of its dynamics and fault detection and diagnosis in advanced engineering technologies. This paper presents a novel probabilistic modeling approach for such power systems with a big data sequence. Firstly, we express input/output function of photovoltaic power systems in which solar irradiation and ambient temperature are regarded as input variable and electric power is output variable respectively. Based on this functional relationship, conditional probability for these three random variables(such as irradiation, temperature, and electric power) is mathematically defined and its estimation is accomplished from ratio of numbers of all sample data to numbers of cases related to two input variables, which is efficient in particular for a big data sequence of photovoltaic powers systems. Lastly, we predict the output values from a probabilistic model of photovoltaic power systems by using the expectation theory. Two case studies are carried out for testing reliability of the proposed modeling methodology in this paper.

Dependency-based Framework of Combining Multiple Experts for Recognizing Unconstrained Handwritten Numerals (무제약 필기 숫자를 인식하기 위한 다수 인식기를 결합하는 의존관계 기반의 프레임워크)

  • Kang, Hee-Joong;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.855-863
    • /
    • 2000
  • Although Behavior-Knowledge Space (BKS) method, one of well known decision combination methods, does not need any assumptions in combining the multiple experts, it should theoretically build exponential storage spaces for storing and managing jointly observed K decisions from K experts. That is, combining K experts needs a (K+1)st-order probability distribution. However, it is well known that the distribution becomes unmanageable in storing and estimating, even for a small K. In order to overcome such weakness, it has been studied to decompose a probability distribution into a number of component distributions and to approximate the distribution with a product of the component distributions. One of such previous works is to apply a conditional independence assumption to the distribution. Another work is to approximate the distribution with a product of only first-order tree dependencies or second-order distributions as shown in [1]. In this paper, higher order dependency than the first-order is considered in approximating the distribution and a dependency-based framework is proposed to optimally approximate the (K+1)st-order probability distribution with a product set of dth-order dependencies where ($1{\le}d{\le}K$), and to combine multiple experts based on the product set using the Bayesian formalism. This framework was experimented and evaluated with a standardized CENPARMI data base.

  • PDF

Estimation of drought risk through the bivariate drought frequency analysis using copula functions (코플라 함수를 활용한 이변량 가뭄빈도해석을 통한 우리나라 가뭄 위험도 산정)

  • Yu, Ji Soo;Yoo, Ji Young;Lee, Joo-Heon;Kim, Tea-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.217-225
    • /
    • 2016
  • The drought is generally characterized by duration and severity, thus it is required to conduct the bivariate frequency analysis simultaneously considering the drought duration and severity. However, since a bivariate joint probability distribution function (JPDF) has a 3-dimensional space, it is difficult to interpret the results in practice. In order to suggest the technical solution, this study employed copula functions to estimate an JPDF, then developed conditional JPDFs on various drought durations and estimated the critical severity corresponding to non-exceedance probability. Based on the historical severe drought events, the hydrologic risks were investigated for various extreme droughts with 95% non-exceedance probability. For the drought events with 10-month duration, the most hazardous areas were decided to Gwangju, Inje, and Uljin, which have 1.3-2.0 times higher drought occurrence probabilities compared with the national average. In addition, it was observed that southern regions were much higher drought prone areas than northern and central areas.

Analysis of 2D Electrophoresis For Cancer Classification (암진단을 위한 2차원 단백질 전기영동 젤 해석)

  • 김재민
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.166-169
    • /
    • 2003
  • 유전자에 대한 정보를 획득하는 기술적인 문제가 해결되면서, 질병 진단을 위한 새로운 접근 방법으로 혈액 속에 있는 모든 단백질(proteome)의 구성을 분석하는 프로테오믹스(proteomics)에 대한 연구가 최근 들어 활발하게 진행되고 있다. 본 논문은 암 진단을 위하여 혈액 중의 단백질의 구성을 측정한 2차원 전기영동 (2D electrophoresis) 젤 데이터를 해석하는 새로운 방법을 제시하였다. 우선 측정된 많은 단백질 스팟(spot) 중에서 T-statistics 방법으로 단백질 스팟들을 선택하였다. 선택된 단백질 스팟들로 이루어진 암 환자와 정상인 두 샘플들의 확률 분포를 각 집단에 따로 적용된 PCA 영역에서 계산하였다. 최종적으로 조건부 확률의 차이에 근거한 베이즈 분류(Bayes classification) 이론을 적용하여 암 진단을 하였다.

  • PDF

Bayesian analysis of cumulative logit models using the Monte Carlo Gibbs sampling (몬테칼로깁스표본기법을 이용한 누적로짓 모형의 베이지안 분석)

  • 오만숙
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.151-161
    • /
    • 1997
  • An easy Monte Carlo Gibbs sampling approach is suggested for Bayesian analysis of cumulative logit models for ordinal polytomous data. Because in the cumulative logit model the posterior conditional distributions of parameters are not given in convenient forms for random sample generation, appropriate latent variables are introduced into the model so that in the new model all the conditional distributions are given in very convenient forms for implementation of the Gibbs sampler.

  • PDF

Bayesian Inference for Mixture Failure Model of Rayleigh and Erlang Pattern (RAYLEIGH와 ERLANG 추세를 가진 혼합 고장모형에 대한 베이지안 추론에 관한 연구)

  • 김희철;이승주
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.505-514
    • /
    • 2000
  • A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, we introduced mixture failure model of Rayleigh and Erlang(2) pattern. This data augmentation approach facilitates specification of the transitional measure in the Markov Chain. Gibbs steps are proposed to perform the Bayesian inference of such models. For model determination, we explored sum of relative error criterion that selects the best model. A numerical example with simulated data set is given.

  • PDF

Investigation on Exact Tests (정확검정들에 대한 고찰)

  • 강승호
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.187-199
    • /
    • 2002
  • When the sample size is small, exact tests are often employed because the asymptotic distribution of the test statistic is in doubt. The advantage of exact tests is that it is guaranteed to bound the type I error probability to the nominal level. In this paper we review the methods of constructing exact tests, the algorithm and commercial software. We also examine the difference between exact p-values obtained from exact tests and true p-values obtained from the true underlying distribution.

Bayesian Hierarchical Mixed Effects Analysis of Time Non-Homogeneous Markov Chains (계층적 베이지안 혼합 효과 모델을 사용한 비동차 마코프 체인의 분석)

  • Sung, Minje
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.263-275
    • /
    • 2014
  • The present study used a hierarchical Bayesian approach was used to develop a mixed effect model to describe the transitional behavior of subjects in time nonhomogeneous Markov chains. The posterior distributions of model parameters were not in analytically tractable forms; subsequently, a Gibbs sampling method was used to draw samples from full conditional posterior distributions. The proposed model was implemented with real data.