• Title/Summary/Keyword: 조건부 분포

Search Result 138, Processing Time 0.025 seconds

이변량 Laplace 분포와 응용

  • Hong, Seong-Sik;Hong, Jong-Seon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.127-130
    • /
    • 2003
  • 주변분포가 Laplace 분포인 세 가지 형태의 이변량 Laplace 분포를 연구한다. 각각의 이변량 Laplace 분포의 확률밀도함수와 누적분포함수를 유도하고, 분포의 그래프를 그려봄으로써 분포의 형태를 알아본다. 조건부 적률을 정리하여 조건부 첨도와 조건부 왜도를 구하고 분포의 성질을 파악한다. 상관계수를 구하여 다른 이변량 분포의 상관계수와 비교해 보았다. 그리고 정의된 분포함수를 응용하여 이변량 Laplace 분포를 따르는 난수벡터를 발생하는 알고리즘을 제안하였으며, 생성된 난수벡터의 표본으로부터 구한 표본평균과 중앙값의 분산-공분산 행렬식을 구하고 이변량 정규분포에 대응하는 행렬식과 비교 토론하였다.

  • PDF

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using Gaussian copula (가우시안 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.203-213
    • /
    • 2017
  • We study estimation and inference of joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. We consider a class of time-varying transformation models and combine the two marginal models using Gaussian copulas to estimate the joint models. Our models and estimation method can be applied in many situations where the conditional mean-based models are inadequate. Gaussian copulas combined with time-varying transformation models may allow convenient and easy-to-interpret modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

GARCH Model with Conditional Return Distribution of Unbounded Johnson (Unbounded Johnson 분포를 이용한 GARCH 수익률 모형의 적용)

  • Jung, Seung-Hyun;Oh, Jung-Jun;Kim, Sung-Gon
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.29-43
    • /
    • 2012
  • Financial data such as stock index returns and exchange rates have the properties of heavy tail and asymmetry compared to normal distribution. When we estimate VaR using the GARCH model (with the conditional return distribution of normal) it shows the tendency of the lower estimation and clustering in the losses over the estimated VaR. In this paper, we argue that this problem can be resolved through the adaptation of the unbounded Johnson distribution as that of the condition return. We also compare this model with the GARCH with the conditional return distribution of normal and student-t. Using the losses exceed the ex-ante VaR, estimates, we check the validity of the GARCH models through the failure proportion test and the clustering test. We nd that the GARCH model with conditional return distribution of unbounded Johnson provides an appropriate estimation of the VaR and does not occur the clustering of violations.

Efficient variable selection method using conditional mutual information (조건부 상호정보를 이용한 분류분석에서의 변수선택)

  • Ahn, Chi Kyung;Kim, Donguk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1079-1094
    • /
    • 2014
  • In this paper, we study efficient gene selection methods by using conditional mutual information. We suggest gene selection methods using conditional mutual information based on semiparametric methods utilizing multivariate normal distribution and Edgeworth approximation. We compare our suggested methods with other methods such as mutual information filter, SVM-RFE, Cai et al. (2009)'s gene selection (MIGS-original) in SVM classification. By these experiments, we show that gene selection methods using conditional mutual information based on semiparametric methods have better performance than mutual information filter. Furthermore, we show that they take far less computing time than Cai et al. (2009)'s gene selection but have similar performance.

The Applicability of KIMSTORM for Flood Simulation Using Conditional Merging Method and Radar Rain Data (조건부 합성기법과 레이더 강우자료를 이용한 분포형 강우유출모형 KIMSTORM의 홍수모의 적용성 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.136-136
    • /
    • 2017
  • 본 연구의 목적은 이중편파 레이더 강우자료와 현재 실무에서 널이 이용되고 있는 레이더 강우보정 기법 적용에 따른 격자기반 분포형 강우-유출 모형인 KIMSTORM (KIneMatic wave STOrm Runoff Model)을 이용하여 유출해석을 수행하여 보정된 레이더 강우자료를 적용한 분포형 수문모형의 효율성을 검토하는데 있다. 남강댐 유역($2,293km^2$)을 대상으로 2014년 8월 태풍 이벤트(나크리), 2016년 10월 태풍 이벤트(차바)에 대하여 비슬산 레이더 강우자료를 사용하였다. 강우자료의 보정은 21개 지점 강우와 레이더 강우를 이용하여 조건부 합성 보정기법을 이용하였으며, 누적 강우량 그리고 면적 강우량 모두 관측치를 잘 재현함을 확인 할 수 있었다. $R^2$(coefficient of determination), ME (model efficiency), VCI (volume conservation index)를 이용하여 적용성을 평가하였다. 2016년 태풍 차바 이벤트에서의 유출 모형의 보정결과 조건부 합성 보정기법을 적용하기전 $R^2$, ME는 각각 0.75, 0.13으로 나타났고 조건부 합성 보정기법을 적용하였을 경우 각각 0.87, 0.82로 유출량 정확도가 크게 향상됨을 나타냈다. 다양한 국지성 집중호우 이벤트는 레이더 강우자료의 과대 및 과소추정을 유발하는 오차의 원인으로 조건부 합성 보정기법은 이러한 오차를 줄여 강우-유출 모형의 유출분석 결과 비교시 첨두유량 및 정량적인 면에서 실측 유량과 가깝게 모의되는 결과를 나타냈다.

  • PDF

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula (비모수적 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.689-700
    • /
    • 2016
  • We study estimation and inference of the joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Regression parameters in the transformation model can be obtained as the solution of estimating equations and our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Nonparametric copulas combined with time-varying transformation models may allow quite flexible modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application (조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.583-592
    • /
    • 2015
  • Zero-inflation has recently attracted much attention in integer-valued time series. This article deals with conditional variance (volatility) modeling for the zero-inflated count time series. We incorporate zero-inflation property into integer-valued GARCH (INGARCH) via conditional Poisson and negative binomial marginals. The Cholera frequency time series is analyzed as a data application. Estimation is carried out using EM-algorithm as suggested by Zhu (2012).

Estimation of Precipitation in Ungaged Watershed using a Conditional Merging Technique Coupled with Different Interpolation Schemes (조건부 합성기법을 활용한 미계측유역의 강수 추정)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.226-226
    • /
    • 2017
  • 최근 국지성 집중호우 및 돌발홍수와 같은 급격한 기상변화로 인한 기상재해의 발생빈도가 증가함에 따라 고해상도의 기상레이더 강수자료를 사용한 수공학 분야의 연구가 활발하게 진행되고 있다. 레이더 강수자료를 수문분석에 활용하는 목적은 레이더 강수량이 제공하는 공간분포를 최대한 활용하는데 있다. 기상레이더는 광범위한 영역에 대하여 시공간적으로 연속적인 관측이 가능하므로 지상 강수자료에 비하여 고해상도의 강수자료를 확보하는데 이점이 있다. 본 연구에서는 고해상도의 레이더 강수자료의 공간분포 특성을 유지하면서 지상 강수자료의 양적특성을 유지할 수 있는 조건부 합성기법을 개발하였다. 레이더 강수자료와 지상 강수자료를 조건부 합성하기 위하여 널리 활용되고 있는 Kriging, 역거리 가중법 및 Spline 보간법을 적용하였다. 조건부 합성결과는 지상 강수패턴을 현실성 있게 재현하였다. 추가적으로 미계측 지점으로 간주하여 보간법에 적용되지 않은 강수자료와 조건부 합성기법 결과에 대하여 교차검증을 수행한 결과 조건부 합성기법을 통한 강수정보는 수문분석에 직접적으로 활용될 수 있는 가능성을 확인하였다. 본 연구결과를 향후 초단기 레이더 강수예측기법과 연계하여 수문모형의 입력 자료로 활용한다면 보다 진보된 수문해석이 가능할 것으로 판단된다.

  • PDF

국내금융자산의 시장위험 추정에 있어서 ARCH류 모형의 유용성 평가

  • Yu, Il-Seong
    • The Korean Journal of Financial Studies
    • /
    • v.11 no.1
    • /
    • pp.157-176
    • /
    • 2005
  • 본 연구는 KOSPI자산 포트폴리오에 대한 VaR를 다양한 ARCH류 모형을 사용하여 추정하고 이들의 예측능력을 평가하였다. 활용된 모형은 우선 기본적인 GARCH(1,1)모형과 레버리지 효과를 감안한 TGARCH모형, 다양한 ARCH모형을 포괄할 수 있는 PGARCH모형, 변동성의 영속성을 고려한 IGARCH모형이 포함되었다. 모형 상호간의 성과비교에 추가하여 ARCH류 모형에서 수익률예측오차의 분포에 따라서 VaR의 예측성과가 얼마나 차이가 발생하는가를 확인하기 위하여 정규분포와 Student-t분포의 성과를 비교하였다. 마지막으로 VaR 추정시에 조건부평균을 무시하는 관례가 어느정도 타당성이 있는지를 확인하기 위하여 1시차 자기회귀과정에 입각한 조건부 평균을 감안한 결과를 검토하였다. ARCH류 모형에서 모형 설명력은 보다 정교한 모형인 TGARCH모형이나 PGARCH모형이 우월하게 나타났지만, VaR의 예측능력 우월성으로 이어지지는 않았다. Student-t분포를 가정한 경우 VaR모형 사후검증성과는 정규분포를 가정한 경우보다 모든 신뢰수준에서 개선되었으며, 조건부평균의 제거는 Student-t분포 가정하에서는 적합하지 않은 것으로 나타났다. ARCH류 모형에서 가장 단순한 형태인 IGARCH모형의 예측성과가 다른 모형들에 비하여 뒤떨어지지 않으며, 더욱 제약된 형태인 RiskMetrics의 EWMA모형이 사후검증에서 우수한 성과를 보여 단순한 모형의 유용성을 확인시켜주고 있다.

  • PDF