• Title/Summary/Keyword: 조강콘크리트

Search Result 102, Processing Time 0.022 seconds

A Study on the High Early Strength Admixture Material for Improving on Reduced Initial Strength and Quality of Concrete in Cold Weather (동절기 콘크리트 초기 강도저하 및 품질 개선을 위한 조강형 혼화재료 활용에 대한 연구)

  • Kim, Sae-Jong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.25-26
    • /
    • 2022
  • The purpose of this study is to prevent serious disasters in cold weather by presenting an optimal blending design for securing high early strength when placing concrete by analyzing the properties and compressive strength of concrete formulations using high early strength admixture materials.

  • PDF

Characteristics of concrete intensity using high early strength AE water reducing agent (조강형 AE감수제를 사용한 콘크리트의 강도발현 특성)

  • Kim, Jung-Tai;Kim, Seung-Han;Jang, Seck-Soo;Jung, Yong-Wook;Yeo, In-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.793-796
    • /
    • 2008
  • Recently early strength concrete has been required for economical assurance and the prevention of frost damage in winter through air reduction in construction of concrete structures. This study presented the optimum condition revealing compressive strength 5MPa which has the possibility of removal of form in 24 hours, and researched the changes of unit weight of cement types of high early strength AE water reducing agents, characteristic of compressive strength expression as cure temperature conditions and slump or airspace. Test results showed at $15^{\circ}C$ with compressive strength of 5MPa that premature removal of form was possible in case of using highly early strength PC water reducing agent with unit weight of cement 360 ; 22hours faster than 10, unit weight 360 ; 20hours faster than 7, unit weight 390 ; 18 hours faster than 4 comparing with OP water reducing agent. And at $5^{\circ}C$ in case of using highly early strength PC water reducing agent with unit weight of cement 330 ; 32hours faster than 10, unit weight 360 ; 30hours faster than 7, unit weight390 ; 27hours faster than 4 comparing with OP water reducing agent. Therefore as the temperature rises $10^{\circ}C$, compressive strength of 5MPa reaching hour shortens 10 hours.

  • PDF

Performance Evaluation of Recycled Aggregate Concrete Block Reinforced with GFRP (GFRP로 보강된 순환골재콘크리트 블록의 성능평가)

  • Kim, Yongjae;Lee, Hyeongi;Park, Cheolwoo;Sim, Jongsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6565-6574
    • /
    • 2013
  • Precast concrete blocks are used mainly for score protection, slope protection and riverbed structure protection, etc. Because these concrete blocks are exposed to water or wetting environments, the steel rebar used as reinforcements in concrete blocks can corrode easily. Corrosion of the steel rebar tends to reduce the performance and service life of the concrete blocks. In this study, Glass Fiber Reinforced Polymer(GFRP) rebar, which does not corrode, was applied instead of a steel rebar to prevent performance degradation of the blocks. Recycled concrete aggregate and high early strength cement(HESC) were used in the concrete mix for field applicability. The experiment results showed that the workability and form removal strength of the recycled aggregate concrete using HESC showed comparable results to normal concrete and the compressive strength at 28 days increased by about 18% compared to normal concrete. The load resistance capacity of the recycled aggregate concrete blocks reinforced with a GFRP rebar increased by approximately 10~30% compared to common concrete block.

A Engineering Properties of High Early Strength Low Carbon Concrete Using Modified Ternary Blended Cement (개량형 3성분계 결합재를 사용한 조강형 저탄소 콘크리트의 기초적 특성)

  • Choi, Hyun-Kyu;Han, Sang-Yoon;Kim, Kyung-Min;Park, Sang-Joon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.55-56
    • /
    • 2011
  • This study is to investigate the engineering properties of low heat concrete incorporating improved ternary blended cement by combining OPC(original portland cement), blast furnace slag and fly ash. The results were summarized as following ; For ITB(Improved Ternary Blend)mixture was that setting time proved to be accelerated, and adiabatic temperature rises were low. The use of ITB resulted in an increase of initial compressive strength.

  • PDF

Evalution of Practial Application of high early Strength Concrete using Early strength type material (조강형 재료를 사용한 초조강 콘크리트의 적용성 평가)

  • Yang, Hoon;Park, Kyu-Yeon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.48-49
    • /
    • 2013
  • This test investigates early strength and durability of concrete using early strength type materials(cement, Polycarboxylate acid). The goal of this test is to secure the strength of 5.0 MPa in 12 hours early age and strength of 14 MPa for 24 hours correspondingly. This type of admixtures, concrete curing temperature, amount of binder and other concrete properties were confirmed by experimental factors. Comparing outcomes from two cases on using early strength type materials and common materials resulted in reducing of costs and shortening of the construction period, that determined the economical benefits of using early strength materials in construction.

  • PDF

The Properties of Strength and Durability of Concrete Using Early-Strength Poly Carbonic Acid Admixture (폴리카르본산계 조강혼화제 혼합 콘크리트의 강도 및 내구 특성)

  • Lee, Sang-Ho;Hong, Kyung-Sun;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.217-224
    • /
    • 2007
  • This study reports the properties of high early strength & durability of concrete using PC admixture. To apply these data to construction site, we did the lab tests. The target of this study is to accomplish early strength of concrete (5.0 Mpa/18 hr), and we did the durability tests such as length change test, chloride ion penetration test, fleeting and thawing test, adiabatic test, etc. And we tested the porperties of concrete by the different factors, such as the type of admixtures, curing temperature, the amount of binder, etc. Through the test of concrete using the different type of admixture, PC type was more excellent than PNS type admixture. As a result, we made a concrete of high early strength concrete, and excellent durable concrete. According to these tests, we concluded that we can apply this type of PC admixture to the civil & construction site, and we can reduce the term of works and finally we will accomplish the economical construction.

Fundamental Study on the Strength Development of Cement Paste using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 강도발현에 대한 기초적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.407-415
    • /
    • 2013
  • The purpose of this research is to verify the performance of hardening accelerator in cement paste through mechanical performance evaluation and micro structure analysis on hardening accelerator for development of super high early strength concrete. The research results showed that hardening accelerator produced $Ca(OH)_2$ when hydrated with cement, enhancing the degree of saturation of Ca ion by using differential thermal analysis. Moreover, porosity was reduced rapidly as capillary pores were filled by hydration products of $C_3S$. According to the experiment using hydration measurement testing, when 1% and 3% of accelerator were mixed, hydration rate increased toward the second peak point compared to high early strength cement, before the first peak point disappeared. It turned out that adding accelerator accelerated the hydration rate of cement, especially $C_3S$. The shape of C-S-H is shown depending on the amounts of accelerator added and the production and age of $Ca(OH)_2$ by using SEM to observes hydration products. Therefore, it's evident that hardening accelerator used in this research increases amounts of $Ca(OH)_2$ and accelerates $C_3S$, it is effective for the strength development on early age.

Applicability of Expansive Additive on Reducing Shrinkage in Ultra-High-Strength-Concrete (팽창재에 의한 초고강도 콘크리트의 수축저감)

  • Seo, Kyong-Won;Baek, Ki-Hyun;Kim, Young-Jin;Kwak, Do-Yeon
    • Magazine of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • 본 연구에서는 초고강도 콘크리트의 자기수축 제어대책으로서 팽창재를 이용하는 경우의 적절한 첨가량 및 유효성에 대하여 확인하였고, 재팽창 현상에 대해서 검토하였다. 그 결과 물시벤트비가 극히 낮은 초고강도 콘크리트의 특성상 과첨가의 경우는 미반응의 팽창재가 잔존하고 재팽창 할 가능성이 있는 것으로 나타났으며 초고강도 콘크리트용의 팽창재로서는 가능한 미수화 팽창재가 잔존하지 않는 팽창재 즉 팽창성능을 충분히 가지면서 수화반응이 빠른 조강성의 비표면적이 큰 팽창재가 바람직한 것을 제안하고 있다.

Compressive Strength and Fluidity of Low Temperature Curable Mortar Using High Early Strength Cement According to Types of Anti-freezer, Accelerator for Freeze Protection and Water Reducing Agent (조강형시멘트를 사용한 저온경화형 모르타르의 압축강도 및 유동특성에 미치는 방동제, 내한촉진제 및 감수제의 영향)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk;Lee, Han-Seung;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Min, Tae-Beom
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.405-412
    • /
    • 2016
  • In order to examine the possibility of practical use of concrete at low-temperature environment using high early strength cement with cold resistance admixture, an experimental study on workability, freezing temperature and compressive strength of the mortar with different types of anti-freezer, water reducing agent and accelerator for freeze protection at low-temperature were evaluated. Compressive strength was increased in use of anti-freezer, especially SN anti-freezer was higher than CN anti-freezer. 0min flow was increased, the 20min flow was decreased. And 20min flow was improved in use of FR, RT water reducing agent. CF, LS accelerator for freeze protection, regardless of the type of water reducing agent, compressive strength was increased.