• Title/Summary/Keyword: 제한조건 경계샘플링

Search Result 3, Processing Time 0.017 seconds

An Efficient Constraint Boundary Sampling Method for Sequential RBDO Using Kriging Surrogate Model (크리깅 대체모델을 이용한 순차적 신뢰성기반 최적설계를 위한 효율적인 제한조건경계 샘플링 기법)

  • Kim, Jihoon;Jang, Junyong;Kim, Shinyu;Lee, Tae Hee;Cho, Su-gil;Kim, Hyung Woo;Hong, Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.587-593
    • /
    • 2016
  • Reliability-based design optimization (RBDO) requires a high computational cost owing to its reliability analysis. A surrogate model is introduced to reduce the computational cost in RBDO. The accuracy of the reliability depends on the accuracy of the surrogate model of constraint boundaries in the surrogated-model-based RBDO. In earlier researches, constraint boundary sampling (CBS) was proposed to approximate accurately the boundaries of constraints by locating sample points on the boundaries of constraints. However, because CBS uses sample points on all constraint boundaries, it creates superfluous sample points. In this paper, efficient constraint boundary sampling (ECBS) is proposed to enhance the efficiency of CBS. ECBS uses the statistical information of a kriging surrogate model to locate sample points on or near the RBDO solution. The efficiency of ECBS is verified by mathematical examples.

Reliability-Based Design Optimization Using Kriging Metamodel with Sequential Sampling Technique (순차적 샘플링과 크리깅 메타모델을 이용한 신뢰도 기반 최적설계)

  • Choi, Kyu-Seon;Lee, Gab-Seong;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1464-1470
    • /
    • 2009
  • RBDO approach based on a sampling method with the Kriging metamodel and Constraint Boundary Sampling (CBS), which is sequential sampling method to generate metamodels is proposed. The major advantage of the proposed RBDO approach is that it does not require Most Probable failure Point (MPP) which is essential for First-Order Reliability Method (FORM)-based RBDO approach. The Monte Carlo Sampling (MCS), most well-known method of the sampling methods for the reliability analysis is used to assess the reliability of constraints. In addition, a Cumulative Distribution Function (CDF) of the constraints is approximated using Moving Least Square (MLS) method from empirical distribution function. It is possible to acquire a probability of failure and its analytic sensitivities by using an approximate function of the CDF for the constraints. Moreover, a concept of inactive design is adapted to improve a numerical efficiency of the proposed approach. Computational accuracy and efficiency of the proposed RBDO approach are demonstrated by numerical and engineering problems.

Deformable Model using Hierarchical Resampling and Non-self-intersecting Motion (계층적 리샘플링 및 자기교차방지 운동성을 이용한 변형 모델)

  • 박주영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.11
    • /
    • pp.589-600
    • /
    • 2002
  • Deformable models offer an attractive approach for extracting three-dimensional boundary structures from volumetric images. However, conventional deformable models have three major limitations - sensitive to initial condition, difficult to represent complex boundaries with severe object concavities and protrusions, and self-intersective between model elements. This paper proposes a deformable model that is effective to extract geometrically complex boundary surfaces by improving away the limitations of conventional deformable models. First, the proposed deformable model resamples its elements hierarchically based on volume image pyramid. The hierarchical resampling overcomes sensitivity to initialization by extracting the boundaries of objects in a multiscale scheme and enhances geometric flexibility to be well adapted to complex image features by refining and regularizing the size of model elements based on voxel size. Second, the physics-based formulation of our model integrates conventional internal and external forces, as well as a non-self-intersecting force. The non-self-intersecting force effectively prevents collision or crossing over between non-neighboring model elements by pushing each other apart if they are closer than a limited distance. We show that the proposed model successively extracts the complex boundaries including severe concavities and protrusions, neither depending on initial position nor causing self-intersection, through the experiments on several computer-generated volume images and brain MR volume images.