• Title/Summary/Keyword: 제트 폭

Search Result 28, Processing Time 0.033 seconds

Behavior of Non-buoyant Round Jet under Waves (파랑수역에서 비부력 원형 제트의 거동)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.596-605
    • /
    • 2007
  • The behavior of a non-buoyant turbulent round jet discharging horizontally was investigated experimentally. The instantaneous velocity field of the jet was obtained using the particle image velocimetry (PIV) method and used to calculate the mean velocity field by phase-averaging. This study tested regular waves with a relatively small wave height for a wavy environmental flow. The centerline and cross-sectional velocity profiles were reported to demonstrate the effect of the waves on the jet diffusion in respect of wave height and wave phase. The wave phase effect was studied for three phases: zero-upcrossing point, zero-downcrossing point, trough. From the results, it is found that the centerline velocity decreases and width of the cross-sectional profile increases as the wave height increases. In addition, the self-similarity of the cross-sectional profile appears to break down although the width of each case along the axial distance does not vary significantly. The phase effect is found to be relatively small compared to the wave height effect.

Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator (펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구)

  • Kim, Young Sun;Shin, Jichul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.907-913
    • /
    • 2017
  • The performance of a spark jet driven by pulsed-arc plasma was investigated experimentally for various energy input. A high-speed jet (about 330 m/s) was obtained by rapid gas heating produced by 37 mJ of deposited energy per pulse. The peak velocity and penetration distance of the jet were proportional to the deposited power and the deposited energy per pulse, respectively. A smaller orifice diameter produces a higher velocity jet at lower energy levels. For the same deposited energy, higher-current pulses produce a higher jet velocity than higher-pulse-width pulses. A total deposited energy of about 10 mJ per pulse with a pulse duration of about $10{\mu}s$ was found to be the optimum for energy- efficient operation.

An Experimental Study on the Supersonic Free Jet Discharged from a Petal Nozzle (Petal 노즐로부터 방출되는 초음속 자유제트에 관한 실험적 연구)

  • 이준희;권용훈;정미선;이장창;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.55-56
    • /
    • 2002
  • 노즐로부터 방출되는 초음속 제트유동의 특성은 노즐의 공급압력과 배압의 비에 따라 결정된다 노즐 배압에 상대적인 노즐 출구면에서 발생하는 압력의 크기에 따라 제트 유동은 과팽창, 적정팽창, 그리고 부족팽창의 형태로 된다. 종래 주로 단면이 원형인 초음속 노즐로부터 방출되는 자유제트에 관하여 많은 연구가 수행되어, 제트 유동의 특성이 비교적 잘 알려져 있다. 이들 연구 결과에 의하면, 제트 내부에서 발생하는 충격파 시스템은 노즐 출구면에서 유동의 팽창상태에 의존하게 되며, 제트 유동은 주위의 기체를 흔입(entrainment)하여, 유동의 하류방향으로 제트 폭이 확대되며, 유속은 감소하게 된다.

  • PDF

Finite Element Analysis for the Penetration Phenomena of Shaped Charge Jets using Hydrodynamic Theory (Hydrodynamic 이론을 이용한 성형작약탄두 제트의 관통 현상에 관한 유한요소 해석)

  • Kang, Youngku
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • In this paper, the penetration process of Shaped charge jet(SCJ) was simulated through finite element analysis to obtain physical quantities such as jet incidence velocity, penetration rate, and penetration increment. As a result of applying these physical quantities to the hydrodynamic theory, it was confirmed that the penetration efficiency of the jet with a high incident velocity is higher than that of the following slow jet. This efficiency decreased sharply when the jet was slower than the hydrodynamic limit(HL). On the other hand, the comparison of penetration increment and jet consumption over time showed that the length extension effect should be considered for SCJ's theoretical penetration analysis.

수직 평판 위에서 과소팽창 제트의 충돌

  • 이택상;신완순;이정민;박종호;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.17-17
    • /
    • 1999
  • 충돌제트는 산업, 항공우주, 군사 분야 등 공학적으로 많은 분야에서 응용되고 있다. 산업분야에서 충돌제트는 설치가 간단하고 형태가 단순하면서도 열 및 물질 전달효과가 상당히 크기 때문에 고효율의 열전달 효과를 얻을 수 있다는 점에서 광범위하게 응용된다. 예를 들면 물체 표면의 부분냉각은 고온 금형의 급속 냉각, 가스터빈 깃의 냉각, 전자부품의 냉각 등에 이용되며 부분 가열에서는 제철, 제지 및 유리공업, 금형의 풀림 등에 폭 넓게 적용된다. 항공우주, 군사분야에서는 수직/단거리 이·착륙기(V/STOL)의 발진, 미사일 발사시스템, 다단 로켓의 분리, 우주공간에서의 도킹, 화염 편향기 등에 적용이 되며 대부분 평판이나 특수한 판의 형상에 과소 팽창제트가 충돌할 때 발생하는 현상에 대한 것이다.

  • PDF

Experimental Observation of Instability of Supersonic Submerged Jets (수중초음속제트의 불안정성에 대한 실험적 고찰)

  • 정재권;이대훈;차홍석;박승오;권세진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • An experimental investigation on the structure and dynamic behavior of two dimensional over-expanded air jets exiting into water was carried out. The hish speed digital video imaging and static pressure distribution measurement were made to characterize the structure and time-dependant behavior of the jets. Mach number at the jet exit was 2.0 and was slightly less than the value predicted by the ideal nozzle calculation. Variance of jet spreading angle at different stagnation condition was measured as a function of mass flow rate. Periodic nature of the air jet distortion in water was observed and the frequency of the repetition was approximately 5-6 Hz for all cases tested. Three characteristic length scales were defined to characterize jet structure. $L_1$, maximum width of the plume when the periodic instability occurs, $L_2$, width of the jet where secondary reverse flow entrained jet flow and $L_3$, distance from the jet exit to the location where entrainment of the secondary reverse flow occurs. The ratio of $L_1$ and $L_2$ decreased with increasing stagnation pressure, i.e. mass flow rate. $L_3$ increased with increasing stagnation pressure. The temporal behavior of static pressure measurements also showed peak around frequency of 5, which corresponds the frequency obtained by visual measurements

Heat Transfer Characteristics by Rods in Transition Region of Impinging Air Jet (충돌제트 천이영역에서 로드에 의한 열전달특성)

  • Kum, Sung-Min
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.96-102
    • /
    • 2011
  • This research has been proceeded over the transition region(H/B=10) of two-dimensional impinging air jet system, in which square rods has been set up in front of heating surface in order to increase heat transfer. The objective of this research was to investigate the characteristics of heat transfer and air flow, in cases the clearance from rods to heating surface(C=1, 2, 4, 6 mm) and the width of rods(W=4, 6, 8 mm) changed. And this research compared the above with the experimentation without rods. As result, heat transfer performance was best under the condition of C=1 mm, and as the width is 8 mm, it is largely influenced by eddies and acceleration in case width of rods changed.

Development of High Performance Micro Turbojet Engine (고성능 초소형 터보제트엔진 개발)

  • Paeng, Ki-Seok;Ahn, Chul-Ju;Min, Seong-Ki;Kim, Yu-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.548-551
    • /
    • 2010
  • A 150 lbf-thrust class micro turbojet engine has been developed. The engine could be applied to power plant for small aviation vehicle such as UAV, decoy and anti-radar missile and was designed with concepts that has small size, low-cost and high performance. A prototype was manufactured and performed the ground static test and high altitude test. This paper outlines the features and layout of 150 lbf turbojet engine and also describes the design characteristics and test results of the engine and components.

  • PDF

Characteristics of Liquid Fuel Jet Injected into Supercritical Environment (초임계 환경으로 분사되는 액체 연료 제트의 분사 거동 특성)

  • An, Jeongwoo;Choi, Myeung Hwan;Lee, Jun;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.333-338
    • /
    • 2022
  • The single jet of decane/methylcyclohexane mixed fuel that is surrogate for kerosene was injected into supercritical environment and visualized using shadowgraph technique. The injection pressure drop of the fuel jet of Tr = 0.484 was kept constant at 0.5 MPa and the experiment was conducted above the critical point of the mixed fuel, and the reduced temperatures of the chamber was changed from 1.00 to 1.23, and the reduced pressures was 1.00 and 1.38. As an index for reducing the density of jets sprayed into the supercritical environment, the brightness intensity of the post-processed jet image was observed with the internal temperature and pressure of the chamber. It was confirmed that the decrease in the brightness intensity of the jet when the temperature inside the chamber increased, and when the pressure inside the chamber was higher at the same temperature, the decrease in the brightness intensity of the jet was delayed. When the pressure inside the chamber is high, it is thought that the change in brightness intensity is delayed due to the increase in the pseudo-critical temperature of the fuel and the increase in the temperature required to reduce the density of the fuel jet.

Temporally developing behavior of an evolving jet diffusion flame (전개확산제트화염의 시간 발달 거동)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 1997
  • Experimental investigations on the comparison of developments between transient jets and evolving jet diffusion flames have been made in initial injection period. To achieve this experiment, an ignition technique using a residual flame as the ignition source is devised. High speed Schlieren visualizations, and measurements including jet tip penetration velocities and jet widths of the primary vortex are employed to examine the developing processes for several flow conditions. It is seen that the developing behaviors in the presence of flame are greatly different from those in transient jet, and thus the flow characteristics in the transient part are also modified. The discernible differences are shown to consist of the delay of the rollup of the primary vortex, the faster spreading after the rollup due to exothermic expansion, and the survival of only a primary vortex. The growth of primary vortex in the transient jet is properly explained through an impulsively started laminar vortex prior to the interaction. It is also found that the jet tip penetration velocity varies with elapsed time and an increase in Res gives rise to a higher tip penetration velocity.