• Title/Summary/Keyword: 제트엔진

검색결과 283건 처리시간 0.025초

Analysis on Acoustic Noise around Launch Pad Induced by the Launch of a Space Launch Vehicle (우주발사체 발사에 의한 발사장 주변의 음향 소음 분석)

  • Sim, Hyung-Seok;Choi, Kyu-Sung;Ko, Jeong-Hwan;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.208-215
    • /
    • 2012
  • The acoustic noise around a launch pad by launches of space launch vehicles was analyzed. The magnitudes of sound noise at some points near launch pad were predicted by locating the sound source at the exhaust jet plume of the rocket engine and considering several factors such as the directivity of the sound propagation and atmospheric attenuation. Specifically, the launch noise of Korea Space Launch Vehicle-I (KSLV-I) was estimated, and was compared to the actual measurement results. The analysis results proved to be heavily affected by the characteristics of directivity of sound propagation and the analysis showed good agreements with the measurements when the directivity of the sound was appropriately adjusted.

RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors (RANS 및 LES를 이용한 리세스가 있는 동축분사기의 유동혼합에 대한 수치해석)

  • Park, Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제16권1호
    • /
    • pp.55-63
    • /
    • 2012
  • The turbulent flow characteristics in a coaxial injector were investigated by the nonlinear $k-{\varepsilon}-f_{\mu}$ model of Park et al.[1] and large eddy simulation (LES). In order to analyze the geometric effects on the scalar mixing for nonreacting variable-density flows, several recessed lengths and momentum flux ratios are selected at a constant Reynolds number. The nonlinear $k-{\varepsilon}-f_{\mu}$�� model proposed the meaningful characteristics for various momentum flux ratios and recess lengths. The LES results showed the changes of small-scale structures by the recess. When the inner jet was recessed, the development of turbulent kinetic energy became faster than that of non-recessed case. Also, the mixing characteristics were mainly influenced by the variation of shear rates, but the local mixing was changed by the adoption of recess.

A Study on the Transitional Shock Separation Patterns in an Over-Expanded Nozzle (과팽창 노즐에서 발생하는 충격파 박리 패턴의 천이에 관한 연구)

  • Lee, Jong-Sung;Lijo, Vincent;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제14권3호
    • /
    • pp.9-15
    • /
    • 2010
  • Numerical investigation was carried out on axisymmetric over-expanded rocket nozzle to predict flow fields of transitional shock separation patterns. The unsteady, compressible N-S equations with k-$\omega$ SST for turbulence model closure were solved using a fully implicit finite volume scheme. Computed results were in good agreement with previous experimental works. It was found that strong side-loads were generated during the transition of RSS to FSS due to the development of a vortex ring in the inviscid jet core region. Hysteresis phenomenon exhibited by the shock-separation patterns was also found during the start-up and shut-down processes.

Comparison of Thrust Measurement of a Supersonic Wind Tunnel (초음속 풍동의 추력 측정 방법 비교)

  • Heo, Hwan Il;Kim, Hyeong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제31권5호
    • /
    • pp.93-99
    • /
    • 2003
  • The determination of thrust is essential in design and evaluation of a hypersonic airbreathing propulsion device. Conventional methods to determine the thrust is using thrust stand or force measurement system. However, these conventional methos are not applicable to the case where thrusts stands are impractical, such as free jet testing of engines, and model combustor. For this reason, the thrust determination method from measured pitot pressure is considered and validated. Validation of thrust determination from pitot pressures can be achieved by comparing the actual thrust from thrust stand. For validation purpose, a small-scale supersonic wind tunnel is installed on the thrust stand. Thrusts are measured while pressures are measured simulaneously. Then, the thrust from pitot pressure measurements are compared with the measured thrust and theoretical thrusts.

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air Condition (고압 유동조건에서의 액체 램제트 엔진의 분무특성)

  • Youn, H.J.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • 제9권2호
    • /
    • pp.34-40
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its characteristics and devising a means of fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and the jet penetrations in the high pressure conditions have a similar tendency. In the dual orifice injectors, the jet penetrations of rare orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rare orifice is increased because of the drag reduction created by the jet column of the front orifice. Because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual orifice injector is much larger than the jet penetrations of single orifice injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

Development of Engine Piston Ring Surface for Friction Reduction using Micro Abrasive Air Jet (Micro-AAJ를 이용한 엔진 피스톤 링의 마찰 저감 표면 개발)

  • Choi, Soochang;Ro, Seung-Kook;Lee, Hyun-Hwa;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제31권5호
    • /
    • pp.389-394
    • /
    • 2014
  • In this paper, we report a new manufacturing method for friction reduction using micro-AAJ (abrasive air-jet) machining. AAJ machining employs compressed air to accelerate a jet of high-speed particles to mechanically machine features, including micro-channels and micro-holes, into glass, metal, or polymer substrates for use in microfluidics, MEMS (micro electromechanical systems). And we introduce the micro-AAJ machining system, which consists of a micro-AAJ nozzle and a five-axis positioning system. Various micro-AAJ nozzles can be used, depending on the required surface structure, and three-dimensional machining is possible. We machined samples under six different conditions and describe machining results obtained while using it. We also measured the coefficient of friction of micro-textured surfaces. We report the coefficient of friction of micro-textured surfaces patterned using micro-AAJ machining for engine piston ring.

A Study on Steady-state Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.177-182
    • /
    • 2003
  • In this study, a performance model of the Smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as welt as the fixed wing mode for high speed forward flight, has been newly developed. With the proposed model, steady-state performance analysis was performed at various flight modes and conditions, such as rotary wing mode, fixed wing mode, compound wing, mode altitude and flight speed. In investigation of performance analysis, it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case has much greater than that with the flight speed variation case.

  • PDF

Study of the Weak Shock Wave Propagating inside an Engine Exhaust Muffler (엔진 배기 소음기내를 전파하는 약한 충격파에 관한 연구)

  • 이동훈;권용훈;김희동
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제12권7호
    • /
    • pp.510-519
    • /
    • 2002
  • The present study addresses a computational work of the weak shock wave propagating inside an automobile exhaust muffler. Several different types of the silencer systems are employed to investigate the magnitude of the shock wave during propagating through them. The Initial shock wave Mach number $M_s$ is varied between 1.01 and 1.30, and a normal shock wave is given at the inlet of the silencer systems. The second order total variation diminishing scheme Is employed to solve the two dimensional, compressible, unsteady Euler equations. The present computational results are compared with the previous experimental ones available. The present computations predict the experimental results with a quite good accuracy. Of the four silencer systems applied. the most desirable silencer system to reduce the peak pressure at the exalt of the exhaust pipe is discussed from the Point of view of the engineering design of the silencer systems.

Fuel Distribution Measurements in ATR Combustor using PLIF (PLIF를 이용한 ATR 연소기 내부의 연료분포 측정)

  • Yang In-Young;Jin You-In;Yang Soo-Seok;Park Seung-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2004년도 제23회 추계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2004
  • Fuel/air mixing in air turbo ramjet(ATR) combustor is a significant parameter of combustion stability and efficiency. In this study, fuel distribution in the ATR model combustor was measured to compare the degree of mixing with respect to the velocity ratio$(r=v_a/v_f)$ between fuel gas and air. Planar laser-induced fluorescence(PLIF) and image processing method were used to obtain two dimensional fuel distribution. Fuel mixing went bad with approaching to r=1.

  • PDF

Comparison of Development and Marketing Strategies of Airbus and Boeing (에어버스와 보잉사의 대형민간항공기 개발 및 마케팅 전략 비교 연구)

  • 송춘영;허희영
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제34권6호
    • /
    • pp.98-116
    • /
    • 2006
  • For the next two decades the civil aviation industry is expected to grow. Both Airbus and Boeing predict a delivery of almost 20,000 new Large Civil Aircraft (LCA). LCA is defined as a large civil jet aircraft with 100 seats or more. Airbus offers the Superjumbo, A380 (>555 seats), while Boeing presents the Dreamliner, B787 (200 – 300 seats). Their philosophies are very different. In the wake of B787, Airbus intends to offer a new aircraft, A350, as the competitor against B787, with the same engines developed for B787. The U.S. government pushed by Boeing, on the day of October 6, 2004, filed a suit against Airbus for wrongful subsidy to the World Trade Organization (WTO). A brief overview is given on the LCA development status in the world commercial aircraft market. Since there have been little changes in engine and avionics manufacturers in the LCA industry, the airframe area only is the object of this study. An analysis is carried out to find out the differences in development and marketing strategies of two major LCA manufacturers, Airbus and Boeing. The authors predict that Boeing will recapture its No. 1 position soon, while the leading edge in technology may be slipped away from Boeing.