• Title/Summary/Keyword: 제진공법

Search Result 9, Processing Time 0.024 seconds

Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method(Part 2:Analytical Study) (TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 2:해석적 연구))

  • Jung, Myung-Cheol;Song, Jeong-Weon;Song, Jin-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2018
  • In this study, the nonlinear time history analysis of seismic retrofitted structures with TS damper for seven ground motion records was conducted for the purpose of verifying the seismic strengthening effect of TS seismic retrofitting method. Through comparison of the interstory drift ratio and the energy dissipation amount of the non - reinforced structure obtained and those of retrofitted structures with TS damper from the nonlinear time history analysis, the interstory drift ratio was reduced by about 30% and the amount of energy dissipation through the structure was halved. As a result, it was confirmed that the damping performance of the TS seismic retrofitting method is excellent.

Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method (Part 1:Analytical Study) (TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 1:해석적 연구))

  • Jung, Myung-Cheol;Song, Jeong-Weon;Song, Jin-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2018
  • In this study, a cyclic loading test was carried out for a reinforced concrete frame installed a TS(tension-spring) damper for the purpose of verifying the seismic strengthening effect of the TS seismic reinforcing method. The test specimens are four specimens of non - reinforced frame and three reinforced frame specimens. Experimental parameters are Shape of damper and construction method of damper. As a result, the construction method of inserting type inside window was twice as much in terms of strength and stiffness, and the method of externally attached type showed a performance improvement of about 2 times in terms of energy dissipation. From these results, it can be confirmed that the TS seismic reinforcing method is a superior method for field application and seismic strengthening.

Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가)

  • Heur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.23-34
    • /
    • 2015
  • Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Comparison of Aerodynamic Responses for Cable-Stayed Bridges during Construction with Temporary Stabilizing Measures (내풍케이블 배치에 따른 가설 중 사장교의 공기역학적 거동 비교)

  • Cho, Jae Young;Kim, Young Min;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.147-160
    • /
    • 2007
  • In this paper, we described the aeroelastic full-bridge model tests that were conducted to investigate the effect of alternative temporary stabilizing measures for thecable-stayed bridge during construction to ensure aerodynamic stability in the event of a typhoon or similar disasters. The effect of alternative temporary stabilizing measures was investigated through various configurations on two cable-stayed bridges with a main span of 475 m and 230 m, respectively. To investigate the bridge's aerodynamic behaviour and dynamic wind force during construction, the deflections at the end of the cantilever, the accelerations atthe top of the pylon and the moments at the lower part of the pylon were measured. As the result, the system with two sets of vertical cables per cantilever seemed to be the overall most effective solution, but the system with single vertical cable may also work. The combined system using the caisson support and vertical cables and the system with two sets of inclined cables per cantilever on the same anchor block may also be a solution. The inclined cables from the caisson to the girder were effective for some early stages of erecting the deck.

Wind Tunnel Aeroelastic Studies of Steel Cable-stayed Bridge with Wind Cable and Temporary Support (강 사장교 가설 중 임시 제진방법에 대한 풍동실험 연구)

  • Cho, Jae Young;Shim, Jong Han;Lee, Hak Eun;Kwon, O Whon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.33-45
    • /
    • 2006
  • Cable-stayed bridges are more inherently vulnerable to wind during the erection stages than when they are already being used. Even if a bridge that is already being used is aerodynamically stable, it is prone to having aerodynamic instabilities within the design wind speed during construction. Therefore, when the bridge's designers deliberate on the method they will use in constructing the bridge, they must likewise come up with a suitable plan to ensure the stability of the bridge during its erection (e.g., conducting a wind-tunnel investigation). This paper describes the aeroelastic full-bridge model tests that were conducted to investigate the aerodynamic behavior of the bridge during erection, with emphasis on aerodynamic stability and the mitigation of the buffeting response through temporary stabilization. The aerodynamic performance of a cable -stayed bridge with a main span of 50 m was studied in its completed stage and in two erection stages, corresponding 50% and 90% completion, respectively. In the 50% erection stage tests, a balanced cantilever configuration, with wind cable and temporary support at the tower, was conducted. The system that was determined to be most effective in reducing wind action on the bridge during construction was proposed in the paper, based on the results of the comparative study that was conducted.

A Study for Stamping of Patchwork with Resistance Spot Weld (저항 점용접에 의한 실러 패치워크 적용 판재 프레스 성형 연구)

  • Lee, Gyeong-Min;Jung, Chan-Yeong;Song, Il-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.25-31
    • /
    • 2018
  • Recently, research on the development of lightweight vehicle bodies is increasing continuously as a response to fuel economy regulations. To reduce the weight of a vehicle body, a conventional steel plate has been substituted by light weight material with high specific strength and the jointing of multi-materials is generally applied. On the other hand, the customer's demand for safety and emotional quality in NVH (Noise, Vibration and Harshness) is becoming increasingly important. Therefore, a light weight with proper strength and NVH quality is needed. In the view of light weighting and NVH quality, the application of a vibration proof steel plate can be an effective solution but the formability of a sandwich panel is different with a conventional steel sheet. Therefore, careful analysis of formability is required. This study aims to characterize the formability of a sandwich high-strength steel plate. The high-strength steel plates of different thicknesses with resistance spot welding and sealer bonding were analyzed using forming limits diagram through a cup drawing test.

Development of precise clutch gear for automobile transmission by compound forging process (복합단조공법을 이용한 자동차 트랜스미션용 클러치 기어 개발)

  • Lee Kwang-O;Kim Jung-Min;Je Jin-Soo;Kang Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.185-192
    • /
    • 2006
  • A manufacturing process for a clutch gear which demands high strength and wear resistance, was developed by means of computer simulation. A preform was made by hot forging process and subsequent cold sizing process is applied to complete precise tooth part. Processes to obtain high dimensional accuracy and superior mechanical properties are analyzed and optimal heat treatment cycle to improve cold forgeability is introduced. Prototype was produced and the dimensional accuracy of the prototype was inspected to verify proposed process.

Tensile Property Analysis of NCF Composite Laminated Structure for HP-CRTM Forming Process (HP-CRTM 성형공법을 적용하기 위한 NCF 복합재 적층구조에 따른 인장특성 분석)

  • Byeon, Ki-Seok;Shin, Yu-Jeong;Jeung, Han-Kyu;Park, Si-Woo;Roh, Chun-Su;Je, Jin-Soo;Kwon, Ki-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, the HP-CRTM method, which has the ability to produce carbon fiber-reinforce plastic composites at high speeds, has come into the spotlight in the automotive parts industry, which demands high productivity. Multi-axial carbon fabric, an intermediate material used in this HP-CRTM molding process, consists of layered fibers without crimp, which makes it better in terms of tensile and shear strength than the original woven fabrics. The NCF (non-crimp fabric) can form the layers of the carbon fiber, which have different longitudinal and lateral directions, and ${\pm}{\theta}$ degrees, depending on the product's properties. In this research, preforms were made with carbon fibers of ${\pm}45^{\circ}$ and $0/90^{\circ}$, which were lamination structures under seven different conditions, in order to create the optimal laminated structure for automobile reinforcement center floor tunnels. Carbon fiber composites were created using each of the seven differently laminated preforms, and polyurethane was used as the base material. The specimens were manufactured in accordance with the ASTM D3039 standards, and the effect of the NCF lamination structure on the mechanical properties was confirmed by a tensile test.