• Title/Summary/Keyword: 제주지구

Search Result 227, Processing Time 0.025 seconds

Analysis of Ka Band Satellite Link Budgets and Earth Station G/T in Korea Rainfall Environment (국내 강우 환경에서 Ka 밴드 위성 링크 버짓 및 지구국 G/T 분석)

  • Choi, Hyeong-Jae;You, Kyoung-A;Park, Dae-Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 2019
  • In geostationary satellite communications, which are widely used for broadcasting and communication, there is a path loss where the signal power on the path is largely reduced. It is important to consider rain attenuation when calculating link budget because the Ka band frequency is vulnerable to rain attenuation. In this study, rainfall trends were analyzed by using rainfall data from the year 2000 in four regions of Korea (Seoul, Incheon, Busan, Jeju) and the rainfall attenuation was calculated. This was used to analyse the satellite link budget and receiving performance for the down-link of the korea satellite COMS. In this study, the calculated G/T for the rainfall intensity of 0.5% per year using the rainfall data for 18 years increased by approximately $8.5dBK^{-1}$ compared to the ITU's zone-K rain model, and decreased by approximately $1dBK^{-1}$ compared to the precipitation data for 13 years from the TTA(Korea Telecommunications Technology Association). The results of this study can be used for the design of G/T in domestic-installed satellite ground station.

Development Status and Prospect of Geopark Characters (지질공원 캐릭터의 개발 현황과 전망)

  • Ha, Sujin;Shin, Seungwon;Chae, Yong-Un;Lim, Hyoun Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.65-75
    • /
    • 2021
  • Over the past decade, the number of national geoparks has rapidly increased, and 13 areas are currently designated as geoparks. After Jeju Island (2010), Cheongsong (2017), Mudeungsan (2018), and Hantangang River (2020) National Geoparks were listed as UNESCO Global Geoparks. Despite the continuous increase in the number of national geoparks and UNESCO global geoparks, the public interest in geoparks and the effect of regional economic development by geoparks are not yet very significant. Some geopark management organizations have developed geopark characters to appeal to the public through intimacy and friendliness, utilizing parks for education and tourism. However, the characters are not being utilized properly due to a lack of plannings, expertise, storytelling, and management. For geopark characters, which have been neglected since development, to perform their original roles, content production based on appropriate budget compilation and analysis of consumption trends in the character market is necessary. Instead of merely using geopark characters, geopark characters should be loved by the public, as well as local residents.

The Perception on Video Material Making and the Effect on Science Teaching Ability of Non-face-to-face Teaching Material Making Activity for Elementary Pre-service Teachers (비대면 수업 자료 만들기 활동이 초등 예비교사들의 영상 자료 제작에 대한 인식 및 과학 교수 능력에 미치는 효과)

  • Shin, Ae-Kyung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.103-116
    • /
    • 2022
  • The purpose of this study is to investigate the perception on video material making and the effect on science teaching ability after conducting non-face-to-face teaching material making activity for elementary pre-service teachers. This activity consisted two processes. One is that elementary pre-service teachers conduct inquiry, understand related science concepts, analyze science textbooks and then make video material. The other is that they watch video materials produced by colleagues. This study was conducted on 89 elementary pre-service teachers for 8 weeks. After this activity was completed, the perception on video material making and the effect on science teaching ability of elementary pre-service teachers were investigated, and the results were analyzed. In the process of making and watching non-face-to-face teaching materials, elementary pre-service teachers showed positive results in teaching-learning, video production, and emotion and attitude toward video material making. In addition, it was found that they improved their science teaching ability through this activity and were very satisfied with this activity. However, they also mentioned several disappointments such as exclusion of learners' right to self-determination, lack of various communication channels, and errors in content of materials. This suggests that if these problems are solved, non-face-to-face classes can also be a good form of class.

Spatial Similarity between the Changjiang Diluted Water and Marine Heatwaves in the East China Sea during Summer (여름철 양자강 희석수 공간 분포와 동중국해 해양열파의 공간적 유사성에 관한 연구)

  • YONG-JIN TAK;YANG-KI CHO;HAJOON SONG;SEUNG-HWA CHAE;YONG-YUB KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.121-132
    • /
    • 2023
  • Marine heatwaves (MHWs), referring to anomalously high sea surface temperatures, have drawn significant attention from marine scientists due to their broad impacts on the surface marine ecosystem, fisheries, weather patterns, and various human activities. In this study, we examined the impact of the distribution of Changjiang diluted water (CDW), a significant factor causing oceanic property changes in the East China Sea (ECS) during the summer, on MHWs. The surface salinity distribution in the ECS indicates that from June to August, the eastern extension of the CDW influences areas as far as Jeju Island and the Korea Strait. In September, however, the CDW tends to reside in the Changjiang estuary. Through the Empirical Orthogonal Function analysis of the cumulative intensity of MHWs during the summer, we extracted the loading vector of the first mode and its principal component time series to conduct a correlation analysis with the distribution of the CDW. The results revealed a strong negative spatial correlation between areas of the CDW and regions with high cumulative intensity of MHWs, indicating that the reinforcement of stratification due to low-salinity water can increase the intensity and duration of MHWs. This study suggests that the CDW may still influence the spatial distribution of MHWs in the region, highlighting the importance of oceanic environmental factors in the occurrence of MHWs in the waters surrounding the Korean Peninsula.

Submarine Discharge of Fresh Groundwater Through the Coastal Area of Korea Peninsula: Importance as a Future Water Resource (한반도 주변 연안 해저를 통한 담지하수의 유출: 미래 수자원으로서의 중요성)

  • Hwang, Dong-Woon;Kim, Gue-Buem;Lee, Jae-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.4
    • /
    • pp.192-202
    • /
    • 2010
  • Submarine groundwater discharge (SGD) has been recognized as a provider for freshwater, nutrients, and dissolved constituents from continents to the oceans and paid more attention with regard to the mass balance of water or dissolved constituents on local and global scales. The submarine discharge of fresh groundwater (fresh SGD) through seepage or springs in coastal ocean may be especially important in aspects of water resource and marine environment managements in the future. Based on the worldwide compilations of observed fresh SGD, our review reveals that fresh SGD occurs in various marine environments along most shoreline of the world and the global estimates of fresh SGD were approximately 0.01-17% of surface runoff. In addition, the input of fresh SGD calculated and investigated in this study were about 50%, 57%, 89%, and 420% of total river discharge in Jeju Island, Yeongil Bay, Masan Bay, and Yeoja Bay, respectively. These inputs from fresh SGD along the shoreline of Korea Peninsula are much higher than those of the whole world, greatly vary with the region. However, since these estimates are based on the water balance method mainly used in coastal ocean, we have to perform continuous monitoring of various parameters, such as precipitation, tide, evapotanspiration and water residence time, which have an impact on the water balance in a lot of areas for evaluating the precise input of fresh SGD. In addition, since the method estimating the input of fresh SGD has brought up many problems, it is required to make an intercomparison between various methods such as hydrogeological assumption, numerical modeling, and seepage meter.

Review of the Weather Hazard Research: Focused on Typhoon, Heavy Rain, Drought, Heat Wave, Cold Surge, Heavy Snow, and Strong Gust (위험기상 분야의 지난 연구를 뒤돌아보며: 태풍, 집중호우, 가뭄, 폭염, 한파, 강설, 강풍을 중심으로)

  • Chang-Hoi Ho;Byung-Gon Kim;Baek-Min Kim;Doo-Sun R. Park;Chang-Kyun Park;Seok-Woo Son;Jee-Hoon Jeong;Dong-Hyun Cha
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.223-246
    • /
    • 2023
  • This paper summarized the research papers on weather extremes that occurred in the Republic of Korea, which were published in the domestic and foreign journals during 1963~2022. Weather extreme is defined as a weather phenomenon that causes serious casualty and property loss; here, it includes typhoon, heavy rain, drought, heat wave, cold surge, heavy snow, and strong gust. Based on the 2011~2020 statistics in Korea, above 80% of property loss due to all natural disasters were caused by typhoons and heavy rainfalls. However, the impact of the other weather extremes can be underestimated rather than we have actually experienced; the property loss caused by the other extremes is hard to be quantitatively counted. Particularly, as global warming becomes serious, the influence of drought and heat wave has been increasing. The damages caused by cold surges, heavy snow, and strong gust occurred over relatively local areas on short-term time scales compared to other weather hazards. In particularly, strong gust accompanied with drought may result in severe forest fires over mountainous regions. We hope that the present review paper may remind us of the importance of weather extremes that directly affect our lives.

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream ( 경안천 내 질소 함량의 시공간적 변화와 기원 연구)

  • Jonghoon Park;Sinyoung Kim;Soomin Seo;Hyun A Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.139-153
    • /
    • 2023
  • This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.

Mapping of Temperature and Rainfall Using DEM and Multivariate Kriging (수치표고모델과 다변량 크리깅을 이용한 기온 및 강수 분포도 작성)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.1002-1015
    • /
    • 2008
  • We investigate the potential of digital elevation model and multivariate geostatistical kriging in mapping of temperature and rainfall based on sparse weather station observations. By using elevation data which have reasonable correlation with temperature and rainfall, and are exhaustively sampled in the study area, we try to generate spatial distributions of temperature and rainfall which well reflect topographic effects and have less smoothing effects. To illustrate the applicability of this approach, we carried out a case study of Jeju island using observation data acquired in January, April, August, and October, 2005. From the case study results, accounting for elevation via colocated cokriging could reflect detailed topographic characteristics in the study area with less smoothing effects. Colocated cokriging also showed much improved prediction capability, compared to that of traditional univariate ordinary kriging. According to the increase of the magnitude of correlation between temperature or rainfall and elevation, much improved prediction capability could be obtained. The decrease of relative nugget effects also resulted in the improvement of prediction capability.

Application of Mutiple Geophysical Methods in Investigating the Lava Tunnel of Manjanggul in Cheju Island (제주도 만장굴에 대한 복합 지구물리탐사 기법의 적용)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Oh, Seok-Hoon;Lee, Chun-Ki
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.535-545
    • /
    • 1998
  • Various geophysical methods have been applied to the survey of the lava tunnel of Manjanggul in Cheju Island to study the effectiveness of each method in investigating underground tunnels. The surveys employing gravity, magnetic, electrical, AMT and VLF methods were carried out along seven profiles across the Manjanggul; especially, all the five methods were used on one representative profile. Several aspects of different methods pertinent to their use in investigation of underground tunnels have been noted. The electrical method employing the dipole-dipole array appeared to be the most effective one among five methods. Therefore, we have tested the electrical method more carefully by using various electrode spacings, and obtained successful resistivity sections showing the existence of lava tunnels. The gravity method provided relatively successful responses associated with the tunnel although the gravity readings were contaminated by wind blowing during the survey. The gravity data were also useful for the quantitative modeling study. The magnetic data were also successful in delineating the tunnel qualitatively. The AMT data were not successful because the used frequency band was not appropriate in detecting very shallow target. The VLF data were severely influenced by the neighboring noise sources such as power lines and were not successful in detecting the tunnel responses. The comprehensive result of electrical, gravity and magnetic surveys suggests that undiscovered lava tunnels may exist adjacent to the Manjanggul.

  • PDF

Accuracy Analysis of Ocean Tide Loading Constituent Detection Using GNSS Positioning (GNSS 측위방법에 따른 해양조석하중 성분 검출 정확도 분석)

  • Yoon, Ha Su;Choi, Yun Soo;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • Various space geodetic techniques have been developed for highly precise and cost-efficient positioning solutions. By correcting the physical phenomena near the earth’s surface, the positioning accuracy can be further improved. In this study, the vertical crustal deformation induced by the ocean tide loading was accurately estimated through GNSS absolute and relative positioning, respectively, and the tidal constituents of the results were then analyzed. In order to validate the processing accuracy, we calculated the amplitude of eight major tidal constituents from the results and compared them to the global ocean tide loading model FES2004. The experimental results showed that absolute positioning and positioning done every hour during the observation time of 2 hours, which yielded an outcome similar to the reference ocean tide loading model, were better approaches for extracting tide constituents than relative positioning. As a future study, a long-term GNSS data processing will be required in order to conduct more comprehensive analysis including an extended tidal component analysis.