DOI QR코드

DOI QR Code

Spatial Similarity between the Changjiang Diluted Water and Marine Heatwaves in the East China Sea during Summer

여름철 양자강 희석수 공간 분포와 동중국해 해양열파의 공간적 유사성에 관한 연구

  • YONG-JIN TAK (Department of Marine Ecology and Environment, Gangneung-Wonju National University) ;
  • YANG-KI CHO (School of Earth and Environmental Sciences/ Research Institute of Oceanography, Seoul National University) ;
  • HAJOON SONG (Department of Atmospheric Sciences, Yonsei University) ;
  • SEUNG-HWA CHAE (School of Earth and Environmental Sciences, Seoul National University) ;
  • YONG-YUB KIM (Center for Climate Physics, Institute for Basic Science (IBS)/Pusan National University)
  • 탁용진 (강릉원주대학교 해양생태환경학과) ;
  • 조양기 (서울대학교 지구환경과학부/해양연구소) ;
  • 송하준 (연세대학교 대기과학과) ;
  • 채승화 (서울대학교 지구환경과학부) ;
  • 김용엽 (기초과학연구원(IBS) 기후물리연구단/부산대학교)
  • Received : 2023.07.27
  • Accepted : 2023.10.14
  • Published : 2023.11.30

Abstract

Marine heatwaves (MHWs), referring to anomalously high sea surface temperatures, have drawn significant attention from marine scientists due to their broad impacts on the surface marine ecosystem, fisheries, weather patterns, and various human activities. In this study, we examined the impact of the distribution of Changjiang diluted water (CDW), a significant factor causing oceanic property changes in the East China Sea (ECS) during the summer, on MHWs. The surface salinity distribution in the ECS indicates that from June to August, the eastern extension of the CDW influences areas as far as Jeju Island and the Korea Strait. In September, however, the CDW tends to reside in the Changjiang estuary. Through the Empirical Orthogonal Function analysis of the cumulative intensity of MHWs during the summer, we extracted the loading vector of the first mode and its principal component time series to conduct a correlation analysis with the distribution of the CDW. The results revealed a strong negative spatial correlation between areas of the CDW and regions with high cumulative intensity of MHWs, indicating that the reinforcement of stratification due to low-salinity water can increase the intensity and duration of MHWs. This study suggests that the CDW may still influence the spatial distribution of MHWs in the region, highlighting the importance of oceanic environmental factors in the occurrence of MHWs in the waters surrounding the Korean Peninsula.

표층 수온의 이상 고수온 현상인 해양열파는 해양생태계, 수산업, 기상 현상 등 인간 활동 및 해양 생물들에게 광범위하게 영향을 미치기 때문에 많은 해양학자들의 관심을 받고 있다. 본 연구에서는 여름철 동중국해의 해양 물성 변화를 유발하는 중요한 원인인 양자강 희석수 분포가 해양열파에 미치는 영향에 대해서 살펴보았다. 동중국해 표층 염분 분포는 6~8월에 양자강 희석수의 동쪽 확장으로 인해 제주도 및 대한해협까지 희석수의 영향을 받는 것을 알 수 있었고, 9월에는 양자강 희석수가 양자강 하구역에 제한적으로 존재하는 형태를 보여주었다. 여름철 해양열파 누적강도를 Empirical Orthogonal Function (EOF) 분석을 통해 분석하였다. EOF 첫번째 모드의 고유벡터와 주성분 시계열을 추출하여 양자강 희석수와 상관관계 분석을 실시한 결과, 양자강 희석수로 인해 염분이 낮은 해역과 해양열파 누적강도가 강하게 나타나는 해역의 공간 상관성이 매우 높은 음의 상관관계를 보임을 알 수 있었다. 이는 희석수로 인한 성층 강화가 해양열파의 강도 및 지속성을 증가시킬 수 있음을 보여준다. 본 연구결과는 한반도 연근해 해양열파 발생에 있어서 대기변화와 해양 환경이 모두 중요한 요인이 될 수 있음을 시사한다.

Keywords

Acknowledgement

이 논문은 2022년도 강릉원주대학교 신임교원 연구비 지원과 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20220541, 한반도 주변해 해양 기후변화와 생지화학과정 변화 진단·예측 연구).

References

  1. Bai, Y., X. He, D. Pan, C.-T.A. Chen, Y. Kang, X. Chen and W.-J. Cai, 2015. Summertime Changjiang River plume variation during 1998-2010. J. Geophys. Res. Oceans, 119(9): 6238-6257. https://doi.org/10.1002/2014JC009866
  2. Beardsley, R.C., R. Limeburner, K. Kim and J. Candela, 1992. Lagrangian flow observations in the East China, Yellow and Japan seas. La mer, 30: 297-314.
  3. Choi, W., M. Bang, Y. Joh, Y.-G. Ham, N. Kang and C.J. Jang, 2022. Characteristics and Mechanisms of Marine Heatwaves in the East Asian Marginal Seas: Regional and Seasonal Differences. Remote Sens., 14(15): 3522.
  4. Di Lorenzo, E. and N. Mantua, 2016. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change, 6: 1042-1047. https://doi.org/10.1038/nclimate3082
  5. Frolicher, T.L. and C. Laufkotter, 2018. Emerging risks from marine heat waves. Nat. Commun, 9: 650.
  6. Frolicher, T.L., E.M. Fischer and N. Gruber, 2018. Marine heatwaves under global warming. Nature, 560: 360-364. https://doi.org/10.1038/s41586-018-0383-9
  7. Gao, G., M. Marin, M. Feng, B. Yin, D. Yang, X. Feng, Y. Ding and D. Song, 2020. Drivers of marine heatwaves in the East China Sea and the South Yellow Sea in three consecutive summers during 2016-2018. J. Geophys. Res. Oceans, 125(8): e2020JC016518.
  8. Hobday, A.J., L.V. Alexander, S.E. Perkins, D.A. Smale, S.C. Straub, E.C. Oliver, J.A. Benthuysen, M.T. Burrows, M.G. Donat, M. Feng, N.J. Holbrook, P.J. Moore, H.A. Scannell, A.S. Gupta and T. Wernberg, 2016. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr, 141: 227-238. https://doi.org/10.1016/j.pocean.2015.12.014
  9. Holbrook, N.J., H.A. Scannell, A. Sen Gupta, J.A. Benthuysen, M. Feng, E.C.J. Oliver, L.V. Alexander, M.T. Burrows, M.G. Donat, A.J. Hobday, P.J. Moore, S.E. Perkins-Kirkpatrick, D.A. Smale, S.C. Straub and T. Wernberg, 2019. A global assessment of marine heatwaves and their drivers. Nat. Commun, 10: 2624.
  10. Hu, Y., F. Yu, Z. Chen, G. Si, X. Liu, F. Nan and Q. Ren, 2023. Two near-inertial peaks in antiphase controlled by stratification and tides in the Yellow Sea. Front. Mar. Sci., 9: 1081869.
  11. Hughes, T.P., K.D. Anderson, S.R. Connolly, S.F. Heron, J.T. Kerry, J.M. Lough, A.H. Baird, J.K. Baum, M.L. Berumen, T.C. Bridge, D.C. Claar, C.M. Eakin, J.P. Gilmour, N.A.J. Graham, H. Harrison, J.-P.A. Hobbs, A.S. Hoey, M. Hoogenboom, R.J. Lowe, M.T. McCulloch, J.M. Pandolfi, M. Pratchett, V. Schoepf, G. Torda and S.K. Wilson, 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359: 80-83. https://doi.org/10.1126/science.aan8048
  12. Kim, C.S., Y.K. Cho, G.H. Seo, B.J. Choi, K.T. Jung and B.G. Lee, 2014. Interannual variation of freshwater transport and its causes in the Korea Strait: A modeling study. J. Mar. Syst., 132: 66-74. https://doi.org/10.1016/j.jmarsys.2014.01.007
  13. Kim, Y.-Y., Y.-K. Kang, S.-T. Lee, H.K. Jung, C.I. Lee, S. Kim, K.Y. Jeong, D.-S. Byun and Y.-K. Cho, 2022. Potential Impact of Late 1980s Regime Shift on the Collapse of Walleye Pollock Catch in the Western East/Japan Sea. Front. Mar. Sci., 9: 802748.
  14. Korea Oceanographic Data Center (KODC), 1979. Available at: https://www.nifs.go.kr/kodc/ (last accessed: September 22, 2022).
  15. Lee, S., M.S. Park, M. Kwon, Y.H. Kim and Y.G. Park, 2020. Two major modes of East Asian marine heatwaves. Environ. Res. Lett., 15(7): 074008.
  16. Lie, H.J. and C.H. Cho, 2016. Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrographic observations. Prog. Oceanogr., 146: 121-141. https://doi.org/10.1016/j.pocean.2016.06.004
  17. Lim, Y.K., B.S. Park, J.H. Kim, S.S. Baek and S.H. Baek, 2021. Effect of marine heatwaves on bloom formation of the harmful dinoflagellate Cochlodinium polykrikoides: Two sides of the same coin? Harmful Algae, 21: 102029.
  18. Moon, J.H., I.C. Pang and J.H. Yoon, 2009. Response of the Changjiang diluted water around Jeju Island to external forcings: A modeling study of 2002 and 2006. Cont. Shelf Res., 29(13): 1549-1564. https://doi.org/10.1016/j.csr.2009.04.007
  19. Noh, K.M., H.G. Lim and J.S. Kug, 2022. Global chlorophyll responses to marine heatwaves in satellite ocean color. Environ. Res. Lett., 17(6): 064034.
  20. Oh, H., G. Kim, Y.S. Kim, J. Park, C.J. Jang, Y. Min, H. Jun and J. Jeong, 2023. Classification and Causes of East Asian Marine Heatwaves during Boreal Summer. J. Climate, 36: 1435-1449. https://doi.org/10.1175/JCLI-D-22-0369.1
  21. Oliver, E.C.J., M.G. Donat, M.T. Burrows, P.J. Moor, D.A. Smale, L.V. Alexander, J.A. Benthuysen, M. Feng, A. Sen Gupta, A.J. Hobday, N.J. Holbrook, S.E. Perkins-kirkpatrick, H.A. Scannell, S.C. Straub and T. Wernberg, 2018. Longer and more frequent marine heatwaves over the past century. Nat. Commun., 9: 1324.
  22. Park, K.A., E.Y. Lee, E. Chang and H. Hong, 2015. Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. J. Mar. Syst., 143: 24-38. https://doi.org/10.1016/j.jmarsys.2014.10.013
  23. Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes and W. Wang, 2002. An improved in situ and satellite SST analysis for climate. J. Clim., 15(13): 1609-1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  24. Son, Y.B. and J.K. Choi, 2022. Mapping the Changjiang diluted water in the East China Sea during summer over a 10-year period using GOCI satellite sensor data. Front. Mar. Sci., 9: 1024306.
  25. Tak, Y.-J., H. Song and J.-Y. Park, 2022. Wintertime marine extreme temperature events modulate phytoplankton blooms in the North Pacific through subtropical mode water. Environ. Res. Lett., 17(9): 094040.
  26. Tak, Y.-J., H. Song and Y.-K. Cho, 2021. Impact of the reemergence of North Pacific subtropical mode water on the multi-year modulation of marine heatwaves in the North Pacific Ocean during winter and early spring. Environ. Res. Lett., 16(7): 074036.
  27. Vorosmarty, C., B. Fekete and B. Tucker, 1996. Global River Discharge Database, Version 1.0 (RivDIS V1. 0), A Contribution to IHP-V Theme 1 (Paris: UNESCO Press).
  28. Wu, T. and H. Wu, 2018. Tidal mixing sustains a bottom-trapped river plume and buoyant coastal current on an energetic continental shelf. J. Geophys. Res. Oceans, 123(11): 8026-8051. https://doi.org/10.1029/2018JC014105
  29. Yangtze River Conservancy Commission of Ministry of Water Resources, 1950. Available at: http://www.cjw.gov.cn (last accessed: November 26, 2020).