• Title/Summary/Keyword: 제조 빅데이터

Search Result 96, Processing Time 0.026 seconds

Design and Implementation of OPC-Based Intelligent Precision Servo Control Power Forming Press System (OPC 기반의 지능형 정밀 서보제어 분말성형 프레스 시스템의 설계 및 구현)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1243-1248
    • /
    • 2018
  • Metal Powder Metallurgy is a manufacturing technology that makes unique model parts or a certain type of product by using a hardening phenomenon when a powder of metal or metal oxide is put it into a mold and compression-molded by a press and then heated and sintered at a high temperature. Powder metallurgical press equipment is mainly used to make the parts of automobile, electronic parts and so on, and most of them are manufactured using precise servo motor. The intelligent precision servo control powder molding press system which is designed and implemented in this paper has advantages of lowering the price and maintaining the precision by using the mechanical camshaft for the upper ram part and precisely controlling the lower ram part using the high precision servo system. In addition, OPC-based monitoring and process data collection systems are designed and implemented to provide scalability that can be applied to smart manufacturing management systems that utilize Big Data in the future.

Improved Performance of Image Semantic Segmentation using NASNet (NASNet을 이용한 이미지 시맨틱 분할 성능 개선)

  • Kim, Hyoung Seok;Yoo, Kee-Youn;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.274-282
    • /
    • 2019
  • In recent years, big data analysis has been expanded to include automatic control through reinforcement learning as well as prediction through modeling. Research on the utilization of image data is actively carried out in various industrial fields such as chemical, manufacturing, agriculture, and bio-industry. In this paper, we applied NASNet, which is an AutoML reinforced learning algorithm, to DeepU-Net neural network that modified U-Net to improve image semantic segmentation performance. We used BRATS2015 MRI data for performance verification. Simulation results show that DeepU-Net has more performance than the U-Net neural network. In order to improve the image segmentation performance, remove dropouts that are typically applied to neural networks, when the number of kernels and filters obtained through reinforcement learning in DeepU-Net was selected as a hyperparameter of neural network. The results show that the training accuracy is 0.5% and the verification accuracy is 0.3% better than DeepU-Net. The results of this study can be applied to various fields such as MRI brain imaging diagnosis, thermal imaging camera abnormality diagnosis, Nondestructive inspection diagnosis, chemical leakage monitoring, and monitoring forest fire through CCTV.

A Systematic Literature Review on Smart Factory Research: Identifying Research Trends in Korean Academia (스마트공장에 관한 체계적 문헌 분석: 국내 학술 경향 연구)

  • Kim, Gibum;Lee, Jungwoo
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.59-71
    • /
    • 2020
  • The paper reports on a systematic literature review results concerning the smart factory research in Korea. 144 papers were identified from the articles published in Korean journals listed in the Korean citation index by keyword search related to smart factory. Bibliometric analyses were conducted by way of co-occurrence and network analysis using the VOSViewer. Automation, intelligence, and bigdata were identifed as three critical clusters of research while, operating systems, international policy and cases, concept analysis as other three clusters of research. Internet of Things turned out to be a key technology of smart factory linking all of these areas. Servitization studies were small in numbers but seemed to have a lot of potential. Security researches seemed to be lacking connections with other areas of studies. Results of this study can be used as a milestone for identifying future research issues in smart factories.

A Study on Corporate Reputation and Profitability Focus on Online News and Comments (기업평판과 수익성에 관한 연구 온라인 뉴스와 뉴스댓글을 중심으로)

  • Jin, Zhilong;Han, Eun-Kyoung
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.399-406
    • /
    • 2019
  • The purpose of this study is to examine the relationship between corporate reputation and the profitability. In this study, Big Data Analysis was conducted for Hyundai Motor, Shinsegae Department Store, SK Telecom, and Amorepacific to solve research problems. The results of this study show that the effect of each corporate reputation on the profitability is different according to the company. For products such as Hyundai Motor and Amorepacific that are used directly by consumers, the corporate reputation formed by the comments was more influential. In addition, distribution Service company such as Shinsegae Department Store showed more influence by online news. On the other hand, SK Telecom did not have a significant effect on profitability. Based on the results, this study emphasizes the importance of online news and comments on corporate reputation management, and aims to contribute to establishing an efficient reputation management strategy by examining the relationship between corporate reputation and profitability.

A Study on Negative Word-of-mouth Virality of Social Media Using Big Data Analysis: From the Supply Chain Risk's Perspective (빅데이터 분석을 이용한 소셜 미디어의 부정적 구전 파급력에 관한 연구: 공급사슬 리스크 관점에서)

  • Jeong, EuiBeom
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.163-176
    • /
    • 2022
  • As the business ecosystem has become more uncertain, the sources of supply chain risk have also been becoming more diverse. In particular, due to the development of informational technology in recent years, firms need to consider the emerging supply chain risk sources as well as traditional supply chain risk sources. A typical example is negative word-of-mouth by social media. Therefore, we investigated the virality of negative word-of-mouth on manufacturing firms by using YouTube as a representative social media. More specifically, we investigated how the social capital of the video creator influences the virality of negative word-of-mouth and how the emotional tone of the video affects the virality of negative word-of-mouth. In conclusion, the social capital of the video creator influenced the scale and speed of negative word-of-mouth. Furthermore, negative emotion words moderated the relation between the social capital of the video creator and the scale of negative word-of-mouth.

Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach (미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로)

  • Ma Hyoung Ryul;Lee Cheol-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.

Preliminary Inspection Prediction Model to select the on-Site Inspected Foreign Food Facility using Multiple Correspondence Analysis (차원축소를 활용한 해외제조업체 대상 사전점검 예측 모형에 관한 연구)

  • Hae Jin Park;Jae Suk Choi;Sang Goo Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.121-142
    • /
    • 2023
  • As the number and weight of imported food are steadily increasing, safety management of imported food to prevent food safety accidents is becoming more important. The Ministry of Food and Drug Safety conducts on-site inspections of foreign food facilities before customs clearance as well as import inspection at the customs clearance stage. However, a data-based safety management plan for imported food is needed due to time, cost, and limited resources. In this study, we tried to increase the efficiency of the on-site inspection by preparing a machine learning prediction model that pre-selects the companies that are expected to fail before the on-site inspection. Basic information of 303,272 foreign food facilities and processing businesses collected in the Integrated Food Safety Information Network and 1,689 cases of on-site inspection information data collected from 2019 to April 2022 were collected. After preprocessing the data of foreign food facilities, only the data subject to on-site inspection were extracted using the foreign food facility_code. As a result, it consisted of a total of 1,689 data and 103 variables. For 103 variables, variables that were '0' were removed based on the Theil-U index, and after reducing by applying Multiple Correspondence Analysis, 49 characteristic variables were finally derived. We build eight different models and perform hyperparameter tuning through 5-fold cross validation. Then, the performance of the generated models are evaluated. The research purpose of selecting companies subject to on-site inspection is to maximize the recall, which is the probability of judging nonconforming companies as nonconforming. As a result of applying various algorithms of machine learning, the Random Forest model with the highest Recall_macro, AUROC, Average PR, F1-score, and Balanced Accuracy was evaluated as the best model. Finally, we apply Kernal SHAP (SHapley Additive exPlanations) to present the selection reason for nonconforming facilities of individual instances, and discuss applicability to the on-site inspection facility selection system. Based on the results of this study, it is expected that it will contribute to the efficient operation of limited resources such as manpower and budget by establishing an imported food management system through a data-based scientific risk management model.

A Study on Cladding on an Inclined Cylindrical Surface using DED Additive Manufacturing (DED 적층 방식을 활용한 원통면 경사 적층에 관한 연구)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.91-97
    • /
    • 2022
  • The Directed Energy Deposition (DED) is a representative metal additive manufacturing method. Owing to its strong point of repairment, its application is gradually spreading in aerospace applications, power generation, military components, and mold making. 5-axis cladding is needed to repair damage, such as wear and scratches on cylindrical surfaces to circular-shaped parts, including sleeves and liners. Furthermore, the condition of cladding on inclined parts must also be considered to prevent interference between the nozzle and the part. In this study, the effects of changes in scanning speed due to the 5-axis control system and differences from the height of laser beam irradiation due to inclination are evaluated among the items that should be additionally considered in 5-axis cladding compared to 3-axis cladding. Moreover, the trends of the width and height of the clad are identified by different tilting angles via single line cladding. Lastly, cladding methods on cylindrical surfaces at various angles are proposed to enhance the clad quality and post-processing efficacy. These results can be applied with 5-axis cladding on inclined surfaces, including cylindrical surfaces.

Standardization Strategy of Smart Factory for Improving SME's Global Competitiveness (중소기업의 글로벌 경쟁력 제고를 위한 스마트공장 표준화 전략)

  • Chung, Sunyang;Jeon, Joong Yang;Hwang, Jeong-Jae
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.3
    • /
    • pp.545-571
    • /
    • 2016
  • The development of ICT brings a big change in manufacturing industries, and new information technology such as IoT, AR, and big data was applied on manufacturing process. As a result, the concept of smart factory has been introduced as a new manufacturing paradigm. In fact advanced countries like USA, Germany, and Japan have actively introduced smart factory in their manufacturing industries such as electronic, automobile, machinery, to improve production efficiency and quality. The manufacturing environment has been changed into flexible system, so that smart factory will be leading future manufacturing industries. Thes changes have more severe influence on Korean manufacturing industries. Mny industrial companies, have a strong interest in smart factory and they, particularly big enterprises, have been adopting smart factory to increase their manufacturing efficiencies. However, Korean small and medium-sized enterprises (SMEs) have many financial and technological difficulties so that the diffusion of smart factory in Korean SMEs has not been satisfiable up to present. However, smart factory is very important for enhancing their competitiveness in global market. Therefore, this study aims at identifying the standardization strategy of smart factory in so-called Korean 'roots industry' by presuming that the standardization will activate the diffusion of smart factory among Korean SMEs. For this purpose, first, this study examines the competitiveness of SMEs, especially in 'roots industry' and identifies the necessity of diffusion of smart factory among those SMEs. Second, based on the active review on the existing literature, this study identifies four factor groups that would influence the adoption or diffusion of standardized smart factory. They are technological, organizational, industrial and policy factors. Third, using those four factors, this study made two comprehensive case analyses on the adoption and diffusion of smart factory. These two companies belong to molding sector which is one of the important six sectors in 'root industry'. Finally, based on the theoretical and empirical analyse, this study suggests four strategies for activating the standardization of smart factory; international standardization, government-leading standardization, firm-leading standardization, and non-standardization.

An Adolescent PeriodFunctional Cosmetics Trend Analysis System Using SNS BigData (SNS 자료를 이용한 청소년기 기능성 화장품 기호분석시스템)

  • Lee, Sang Moon;Seo, Jeong Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.175-180
    • /
    • 2013
  • In this paper, we proposed that the functionality of teenage school girl cosmetics to improve the performance of the new product development and efficient production of information, analysis and policy analysis system for the SNS. The proposed system functional cosmetics of high school girls on the SNS efficient algorithms to analyze the content and methodology proposed to maximize the throughput of the system, to minimize the execution time of each task. In addition, functional cosmetics of high school girls in the state by identifying the symbols, the analytical results in the development and production of products to reflect propose a visual methodology. Therefore, the proposed system only in cosmetics, as well as an analysis similar to rapidly changing consumer preferences in the manufacturing sector can be applied in various ways.