이 논문은 데이터 큐잉 알고리즘과 의약품 빅데이터를 통해 약품 성분-성분 간의 정보와 질병-성분 간의 정보를 지원함으로써 의약품 다약제 복용 시 부작용이 발생 가능한 약물 정보를 사용자에게 제공하기 위한 시스템을 제안하고 구현한다. 또한, 의약품 성분에 더하여 복용이 금지된 의약품, 공급업체, 유통업체의 정보 등을 제공함으로써 의료 전문가뿐만 아니라 일반 사용자의 의약품 복용에 대한 불안감을 덜어줄 수 있다. 제공되는 대표적인 정보는 두 가지 약물 사이에서 일어나는 부작용, 특정 의약품의 주성분과 효능, 동일한 제약회사에서 제조된 의약품, 만성 질환 환자가 주의해야 할 약품 성분 정보이다. 앞으로, 희귀병 약이나 신약에 대한 정보를 수집하여 데이터를 업데이트하는 것이 필요하다.
In the fourth industrial revolution era, various commercial smart platforms for smart system implementation are being developed and serviced. However, since most of the smart platforms have been developed for general purposes, they are difficult to apply / utilize because they cannot satisfy the requirements of real-time data management, data visualization and data storage of smart factory system. In this paper, we implemented an open source based smart manufacturing big data platform that can manage highly efficient / reliable data integration for the diagnosis diagnostic system of manufacturing robots.
현재 4차 산업 혁명 시대에서 가장 중요한 화두는 빅데이터(Big Data), 인공지능이며, 이를 이용한 분야로 생산, 제조 분야에서도 인공지능 영상 인식 기술을 활용한 생산품을 자동으로 분류하고 나아가 품질검사도 할 수 있도록 개발하고 있다. 또한, 로봇을 공장의 생산라인에 운영하여 노동력 감소에 따른 보완이 되고, 제조과정의 효율성 증가와 생산시간 감소로 생산성을 높일 수 있다. 이를 위해 본 논문에서는 실시간 객체감지 기술인 YOLO-v3 알고리즘을 이용해서 PCB보드 인식, 분류할 수 있는 시스템을 개발하였다.
최근 4차 산업혁명이 이슈가 되면서 빅 데이터나 인공지능에 대한 연구가 활발해지고, 이를 통해 자동화 및 자율화가 제조 공정이나 차량 운행 등에서 활용되고 있다. 또한 이를 위해서 데이터를 분석하고 정제하며 시각화를 효과적으로 하는 방법에 대한 관심도 같이 늘어나고 있다. 본 논문에서는 자동화 공장의 제품을 관리함에 있어 데이터를 쉽게 이해할 수 있도록 시각화하는 방법에 대한 연구를 수행했다. 이를 위해 D3 자바스크립트 라이브러리를 통해 웹기반으로 구현한 제품과 장애를 효과적으로 관리할 수 있는 시스템을 개발했다. 제안하는 관리 시스템은 자동화 공장의 제조 공정 중 제품이나 장애 상황에 대한 이해를 빠르게 하도록 하여 의사결정 하는데 기여할 것이다.
Purpose: The purpose of this study is to derive major policies that domestic small and medium-sized manufacturing companies should consider to maximize productivity and quality improvement by utilizing manufacturing data and AI, and to find priorities and implications. Methods: In this study, domestic and international issues and literature review by country were conducted to derive major considerations such as manufacturing AI technology, manufacturing AI talent, manufacturing AI data and manufacturing AI ecosystem. Additionally, the questionnaire survey targeting 46 experts of manufacturing data and AI industry were conducted. Finally, the major considerations and detailed factors importance were derived by applying the Analytic Hierarchy Process (AHP). Results: As a result of the study, it was found that 'manufacturing AI technology', 'manufacturing AI talent', 'manufacturing AI data', and 'manufacturing AI ecosystem' exist as key considerations for domestic manufacturing AI. After empirical analysis, the importance of the four key considerations was found to be 'manufacturing AI ecosystem (0.272)', 'manufacturing AI data (0.265)', 'manufacturing AI technology (0.233)', and 'manufacturing AI talent (0.230)'. The importance of the derived four viewpoints is maintained at a similar level. In addition, looking at the detailed variables with the highest importance for each of the four perspectives, 'Best Practice', 'manufacturing data quality management regime, 'manufacturing data collection infrastructure', and 'manufacturing AI manpower level of solution providers' were found. Conclusion: For the sustainable growth of the domestic manufacturing AI ecosystem, it should be possible to develop and promote manufacturing AI policies in a balanced way by considering all four derived viewpoints. This paper is expected to be used as an effective guideline when developing policies for upgrading manufacturing through domestic manufacturing data and AI in the future.
ERP는 전사 비즈니스 프로세스의 자동화와 통합을 지원하고, 업무 수행에 관한 방대한 데이터를 기록하고 있다. 최근에 학계와 재계는 ERP 비즈니스 프로세스의 성과 개선과 컴플라이언스 강화를 지원할 수 있는 프로세스 마이닝에 많은 관심을 기울이고 있다. 그러나 이러한 관심은 SAP ERP와 같은 외산 ERP를 채택한 대기업의 비즈니스 프로세스 분석과 개선에 한정되어 있다. 사실, 외산 ERP에 비해 국산 ERP는 이벤트 데이터를 기록하고 관리하는 역량이 부족하다. 그러므로 국산 ERP에 프로세스 마이닝을 적용하는 것은 큰 도전과제이다. 이러한 도전과제를 극복하기 위해 본 연구는 프로세스 마이닝을 활용하여 국산 ERP의 프로세스를 분석하고자 한다. 이와 함께, 본 연구는 국내 화장품 제조기업의 사례에서 배운 교훈을 토론할 것이다. 본 연구의 결과는 국산 ERP를 채택한 국내 중소기업의 경쟁력 강화에 도움을 줄 것으로 기대되며 중소기업 ERP 구축에 투입된 한국 정부의 막대한 투자가 성과를 내는 것에 기여할 수 있을 것이다.
재작업은 제품의 품질 만족을 위해 요구되는 활동으로 제조 현장에서 필수적인 공정이다. 사전에 수행 여부의 파악이 어려운 재작업은 공정시간의 증가 및 제품의 납기 지연으로 이어질 수 있어 이를 고려한 스케줄링이 중요하다. 본 연구에서는 자동차 배관 생산라인인 재작업이 존재하는 유연흐름라인을 대상으로 Dispatching을 통한 평균 흐름시간과 납기지연의 가중합을 최소화하는 스케줄링 연구를 진행하였다. 본 연구에서는 제품별 납기 등 고객 요구와 재작업 및 가공시간 등의 변동성이 존재하는 제조환경에서 Dispatching을 위한 가중치 기반 Dispatching 규칙(WDR)을 제안한다. WDR은 여러 단일 Dispatching 규칙의 가중합으로 구성되며 본 연구는 가중치 탐색을 위해 시뮬레이션 기반 유전알고리즘을 적용하였다. 시뮬레이션 실험을 통해 WDR이 단일 Dispatching 규칙에 비해 우수한 성능을 보임을 확인하였다.
본 연구는 대한민국 정부가 운영하는 의견수렴 및 고충처리 전산망인 국민신문고(http://www.people.go.kr)'의 고용노동부 민원 정책 게시판의 의견을 통해 고용노동부에서 시행하는 직업훈련, 노사관계, 산업안전, 임금정책, 근로기준법 등의 민원 정책에 대한 국민적 의견을 수렴하여 분석하였다. 본 연구는 R프로그램 빅데이터 기법을 이용하여 데이터 시각화, 빈도 분석, 연관분석 등을 실시하였으며, 연구결과는 다음과 같다. 첫째, 한국의 복잡한 임금구조와 노사 간에 인식부족 등으로 임금개념의 불일치, 노사갈등 이 많은 민원요소로 발견되었다. 둘째, 최근 최저임금의 파격적 인상으로 인한 자영업자 및 근로자의 경제적 공황상태 등으로 기인한 각종 민원이 발생하고 있다. 셋째, 생산직 등 제조 분야 등의 영세한 사업장의 안전의식의 부재로 인한 산업재해가 끊임없이 발생하고 있으며, 일 가정 병립을 위한 제도적 뒷받침이 많이 부족한 것으로 나타났다.
최근 코로나 19 사태로 인한 경기 위축에도 불구하고, 재택근무 증가로 집에 거주하는 시간이 늘어나면서 주거환경에 관한 관심이 커지고 있으며, 이에 따라 리모델링에 대한 수요가 증가하고 있다. 또한, 정부의 부동산 정책 또한 규제 정책에서 주택공급 확대 방향으로 전환하면서 이에 따른 인테리어, 가구업계의 매출에도 가시적인 영향이 있을 것으로 예상한다. 정확한 수요예측은 재고 관리와 직결되는 문제로 정확한 수요예측은 불필요한 재고를 보유할 필요가 없어 과잉생산으로 인한 물류, 재고 비용을 줄여줄 수 있다. 하지만 정확한 수요를 예측하기 위해서는 지속적으로 변화하는 경제동향, 시장동향, 사회적 이슈등 외부요인을 모두 고려하여 분석해야 하기 때문에 어려운 문제이다. 본연구에서는 가구 부자재를 생산하고 있는 제조업체에 대하여 신뢰성 있는 결과 도출을 위해 인공지능기반 시계열 분석 방법으로, LSTM 모형, 1D-CNN 모형을 비교 분석하였다.
디스플레이 분야에 스마트 팩토리란 작업 자동화 뿐만 아니라 기존의 공정관리, 이동설비, 공정이상, 결함 분류 등에 AI/BIG DATA 기술을 이용한 보다 효율적인 디스플레이 제조를 의미한다. 과거 디스플레이 제조 과정에서 불량이 나오면 결함 분류, 공정 이상에 대한 대처가 시시각각 달랐기 때문에 이에 대한 많은 시간 소모가 발생했었다. 하지만 디스플레이 제조 분야는 고도화된 공정 장비를 이용해야 하고 불량 원인을 신속하게 파악해 수율을 올리는 것이 디스플레이 제조 산업의 경쟁력이다. 본 논문에는 스마트 팩토리 AI/BIG DATA 기술을 디스플레이 제조에 접목한 사례들에 대해 정리해 보고 기존 방법 대비 어떤 장점이 도출 되어질 수 있는지에 대해 처음으로 분석해 보고자 한다. 이를 통해 향후 AI/BIG DATA를 이용한 디스플레이 제조 분야에 보다 향상된 스마트 팩토리 개발을 위한 사전지식으로 활용하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.