The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.803-809
/
2023
This paper analyzes and evaluates to optimally build a data collection system essential for factory energy management systems on an edge-based lightweight platform. A "Sensor/OPC-UA simulator" was developed based on sensors in an actual food factory and used to evaluate the storage engine of edge devices. The performance of storage engines in edge devices was evaluated to suggest the optimal storage engine. The experimental results show that when using the RocksDB storage engine, it has less than half the memory and database size compared to using InnoDB, and has a 3.01 times faster processing time. This study enables the selection of advantageous storage engines for managing time-series data on devices with limited resources and contributes to further research in this field through the sensor/OPC simulator.
Projects to deploy and diffuse smart factories in South Korea are aimed at enhancing national manufacturing competitiveness. However, a significant portion of deployed companies remain at the basic stage and struggle to utilize smart factories regularly. Existing studies have primarily focused on the technical aspects of smart factories, using data analytics and case studies, leading to a gap in empirical research on continuous use and upgrade intentions. This study identifies key factors influencing smart factory usage and user satisfaction, drawing on the Information Systems Success Model (ISSM) and previous research. It empirically examines the impact of these factors on continuous use intention, management performance, and advancement acceptance intention through smart factory usage and user satisfaction. A structural equation model is employed to validate the research hypotheses, using survey data from 287 small and medium-sized manufacturing enterprises (SMEs) that have adopted smart factories. Results demonstrate that system quality, information quality, service quality, and government support significantly affect smart factory usage, while service quality and government support influence user satisfaction. Furthermore, smart factory usage and user satisfaction have positive effects on management performance, continuous use intention, and subsequently advancement acceptance intention. This study provides novel insights by demonstrating the specific impact mechanisms of smart factory user satisfaction on the business and the intentions of manufacturing SMEs regarding continuous use and advancement acceptance, leveraging the ISSM.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.6
/
pp.203-212
/
2019
Along with the recent fourth industrial revolution, the world's manufacturing powerhouses are pushing for national strategies to revive the sluggish manufacturing industry. Moon Jae-in, the government is in accordance with the trend, called 'advancement of science and technology is leading the fourth round of the Industrial Revolution' strategy. Intelligent information technology such as IoT, Cloud, Big Data, Mobile, and AI, which are key technologies that lead the fourth industrial revolution, is promoting the emergence of new industries such as robots and 3D printing and the smarting of existing major manufacturing industries. Advances in technologies such as smart factories have enabled IoT-based sensing technology to measure various data that could not be collected before, and data generated by each process has also exploded. Thus, this paper uses data generators to generate virtual data that can occur in smart factories, and uses them to analyze the cause of the defect in real time and to predict the replacement cycle of the facility.
As a fundamental study to introduce the reliability-based design code, a statistical study is conducted for the material strength data collected from domestic construction sites. In order to develop a rational design code based on statistics and reliability theory, it is essential to obtain the statistical properties of material strength. Material strength data for concrete, reinforcing bars, and prestressing strands which are used in domestic construction sites are collected and statistically analyzed. Then, the statistical properties are compared with those used in the process of the reliability-based calibration of internationally leading design codes. The statistical properties of the domestic data are such that the bias factor is relatively uniform between 1.13 and 1.20 and the coefficient of variation is below 0.10. Reinforcing bar data show difference among different manufacturers but there is not much difference among re-bar diameters. In the case of tendons, which are high strength materials, both of the domestic and foreign data show smaller values of the bias factor and the coefficient of variation than those of concrete and re-bar. Statistical distribution of all the material strength can be properly assumed as normal, log-normal, or Gumbel distribution after analyzing the classified data by individual construction site and manufacturer rather than the mixed data obtained from different sources in order to express the individual distribution of each structure.
Chae-Young Lim;Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu;Sang-Hyun Lee
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.789-795
/
2023
Digital-Twin are recognized as an important core technology for the realization of Smart Factories by simulating and optimizing the monitoring and predictive maintenance of manufacturing equipment and the operation of production lines in a digital space. To implement this system, we adopt the IEC62541-based OPC-UA (Open Platform Communications Unified-Architecture) Protocol, which has strengths in interoperability and connectivity between heterogeneous platforms. Therefore, In this paper, We designed and implemented an IIoT(Industry Internet of Things) system that connects heterogeneous platforms, and developed an OPC-UA simulator based on IEC 62541. We will present whether the data will be applied to the Digital-Twin Platform and whether it will work, and proceed with performance tests and evaluations. We evaluate the operation performance and OPC-UA performance of the Digital-Twin platform lightened by the proposed device, and present the optimal IEC62514-based simulator system. We proceeded with the performance evaluation of sending and receiving data with OPC-UA wrapping with the proposed simulator, and found that a lightweight Digital-Twin platform can be operated. This research can apply the OPC-UA protocol for implementing smart factory and meta-factory in the manufacturing shop floor with limited resources, avoiding the waste of time and space on the shop floor through the OPC-UA simulator. We expect that this will contribute to a significant improvement in efficiency by minimizing.
Journal of the Korea Society of Computer and Information
/
v.28
no.10
/
pp.27-35
/
2023
In this paper, we propose a process of increasing productivity by applying a deep learning-based defect detection and classification system to the prepreg fiber manufacturing process, which is in high demand in the field of producing composite materials. In order to apply it to toe prepreg manufacturing equipment that requires a solution due to the occurrence of a large amount of defects in various conditions, the optimal environment was first established by selecting cameras and lights necessary for defect detection and classification model production. In addition, data necessary for the production of multiple classification models were collected and labeled according to normal and defective conditions. The multi-classification model is made based on CNN and applies pre-learning models such as VGGNet, MobileNet, ResNet, etc. to compare performance and identify improvement directions with accuracy and loss graphs. Data augmentation and dropout techniques were applied to identify and improve overfitting problems as major problems. In order to evaluate the performance of the model, a performance evaluation was conducted using the confusion matrix as a performance indicator, and the performance of more than 99% was confirmed. In addition, it checks the classification results for images acquired in real time by applying them to the actual process to check whether the discrimination values are accurately derived.
Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.
Journal of the Korea Institute of Information Security & Cryptology
/
v.34
no.4
/
pp.747-761
/
2024
Recently, modern vehicles have been controlled by Electronic Control Units (ECUs), by which the safety and convenience of drivers are highly improved. It is known that a luxury vehicle has more than 100 ECUs to electronically control its function. However, the modern vehicles are getting targeted by cyber attacks because of this computer-based automotive system. To address the cyber attacks, automotive manufacturers have been developing some methods for securing their vehicles, such as automotive Intrusion Detection System (IDS). This development is only allowed to the automotive manufacturers because they have databases for their in-vehicle network (i.e., DBC Format File) which are highly confidential. This confidentiality poses a significant challenge to external researchers who attempt to conduct automotive security researches. To handle this restricted information, in this paper, we propose a method to partially understand the DBC Format File by analyzing in-vehicle network traffics. Our method is designed to analyze Controller Area Network (CAN) traffics so that checksum signals are identified in CAN Frame Data Field. Also, our method creates a Lookup Set by which a checksum signal is correctly estimated for a given message. We validate our method with the publicly accessible dataset as well as one from a real vehicle.
Hyun-Jun, Kong;Jin-Yong, Yoo;Sang-Ho, Eom;Jun-Hyeok, Lee
Journal of Dental Rehabilitation and Applied Science
/
v.38
no.4
/
pp.196-203
/
2022
Purpose: This study aimed to evaluate the accuracy and clinical usability of an identification model using deep learning for 79 dental implant types. Materials and Methods: A total of 45396 implant fixture images were collected through panoramic radiographs of patients who received implant treatment from 2001 to 2020 at 30 dental clinics. The collected implant images were 79 types from 18 manufacturers. EfficientNet and Meta Pseudo Labels algorithms were used. For EfficientNet, EfficientNet-B0 and EfficientNet-B4 were used as submodels. For Meta Pseudo Labels, two models were applied according to the widen factor. Top 1 accuracy was measured for EfficientNet and top 1 and top 5 accuracy for Meta Pseudo Labels were measured. Results: EfficientNet-B0 and EfficientNet-B4 showed top 1 accuracy of 89.4. Meta Pseudo Labels 1 showed top 1 accuracy of 87.96, and Meta pseudo labels 2 with increased widen factor showed 88.35. In Top5 Accuracy, the score of Meta Pseudo Labels 1 was 97.90, which was 0.11% higher than 97.79 of Meta Pseudo Labels 2. Conclusion: All four deep learning algorithms used for implant identification in this study showed close to 90% accuracy. In order to increase the clinical applicability of deep learning for implant identification, it will be necessary to collect a wider amount of data and develop a fine-tuned algorithm for implant identification.
The development of 5G technology, which is a next-generation communication technology capable of processing large amounts of data in real-time and solving delays, is drawing attention. Not only in the United States but also Korea, 5G is focused on supporting R&D as a national strategic technology. The strategy for the smart factory, one of the core services of the 5G, aims to increase the flexibility of manufacturing production lines. The existing wired communications devices can be replaced into wireless ones with the ultra-low-delay and ultra-high-speed characteristics of 5G. For the efficient development of 5G technology, it is necessary to keep abreast of the status and trend. In this study, based on the collected data of 1517 Korea patents and 1928 US patents, 5G technologies trend was analyzed and key technologies were identified by network analysis and topic modeling. We expect that it will be used for decision making for policy establishment and technology strategy of related industries to provide the trends of technology development related to the introduction of 5G technology to smart factories.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.