• Title/Summary/Keyword: 제조 데이터 수집

Search Result 195, Processing Time 0.028 seconds

Evaluation of Storage Engine on Edge-Based Lightweight Platform using Sensor·OPC-UA Simulator (센서·OPC-UA 시뮬레이션을 통한 엣지 기반 경량화 플랫폼 스토리지 엔진 평가)

  • Woojin Cho;Chea-eun Yeo;Jae-Hoi Gu;Chae-Young Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.803-809
    • /
    • 2023
  • This paper analyzes and evaluates to optimally build a data collection system essential for factory energy management systems on an edge-based lightweight platform. A "Sensor/OPC-UA simulator" was developed based on sensors in an actual food factory and used to evaluate the storage engine of edge devices. The performance of storage engines in edge devices was evaluated to suggest the optimal storage engine. The experimental results show that when using the RocksDB storage engine, it has less than half the memory and database size compared to using InnoDB, and has a 3.01 times faster processing time. This study enables the selection of advantageous storage engines for managing time-series data on devices with limited resources and contributes to further research in this field through the sensor/OPC simulator.

The Influencing Mechanism of Manufacturing SMEs' Smart Factory Advancement Acceptance Intention: Based on the Information Systems Success Model (중소제조기업의 스마트팩토리 고도화수용의도 영향 메커니즘: 정보시스템 성공모형을 기반으로)

  • Yoon Jae Kim;Chang-Geun Jeong;Sung-Byung Yang
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.199-220
    • /
    • 2023
  • Projects to deploy and diffuse smart factories in South Korea are aimed at enhancing national manufacturing competitiveness. However, a significant portion of deployed companies remain at the basic stage and struggle to utilize smart factories regularly. Existing studies have primarily focused on the technical aspects of smart factories, using data analytics and case studies, leading to a gap in empirical research on continuous use and upgrade intentions. This study identifies key factors influencing smart factory usage and user satisfaction, drawing on the Information Systems Success Model (ISSM) and previous research. It empirically examines the impact of these factors on continuous use intention, management performance, and advancement acceptance intention through smart factory usage and user satisfaction. A structural equation model is employed to validate the research hypotheses, using survey data from 287 small and medium-sized manufacturing enterprises (SMEs) that have adopted smart factories. Results demonstrate that system quality, information quality, service quality, and government support significantly affect smart factory usage, while service quality and government support influence user satisfaction. Furthermore, smart factory usage and user satisfaction have positive effects on management performance, continuous use intention, and subsequently advancement acceptance intention. This study provides novel insights by demonstrating the specific impact mechanisms of smart factory user satisfaction on the business and the intentions of manufacturing SMEs regarding continuous use and advancement acceptance, leveraging the ISSM.

Analysis of Defective Causes in Real Time and Prediction of Facility Replacement Cycle based on Big Data (빅데이터 기반 실시간 불량품 발생 원인 분석 및 설비 교체주기 예측)

  • Hwang, Seung-Yeon;Kwak, Kyung-Min;Shin, Dong-Jin;Kwak, Kwang-Jin;Rho, Young-J;Park, Kyung-won;Park, Jeong-Min;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.203-212
    • /
    • 2019
  • Along with the recent fourth industrial revolution, the world's manufacturing powerhouses are pushing for national strategies to revive the sluggish manufacturing industry. Moon Jae-in, the government is in accordance with the trend, called 'advancement of science and technology is leading the fourth round of the Industrial Revolution' strategy. Intelligent information technology such as IoT, Cloud, Big Data, Mobile, and AI, which are key technologies that lead the fourth industrial revolution, is promoting the emergence of new industries such as robots and 3D printing and the smarting of existing major manufacturing industries. Advances in technologies such as smart factories have enabled IoT-based sensing technology to measure various data that could not be collected before, and data generated by each process has also exploded. Thus, this paper uses data generators to generate virtual data that can occur in smart factories, and uses them to analyze the cause of the defect in real time and to predict the replacement cycle of the facility.

Statistical Properties of Material Strength of Concrete, Re-Bar and Strand Used in Domestic Construction Site (국내 현장의 콘크리트, 철근 및 강연선 재료 강도에 대한 통계 특성 분석)

  • Paik, In-Yeol;Shim, Chang-Su;Chung, Young-Soo;Sang, Hee-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.421-430
    • /
    • 2011
  • As a fundamental study to introduce the reliability-based design code, a statistical study is conducted for the material strength data collected from domestic construction sites. In order to develop a rational design code based on statistics and reliability theory, it is essential to obtain the statistical properties of material strength. Material strength data for concrete, reinforcing bars, and prestressing strands which are used in domestic construction sites are collected and statistically analyzed. Then, the statistical properties are compared with those used in the process of the reliability-based calibration of internationally leading design codes. The statistical properties of the domestic data are such that the bias factor is relatively uniform between 1.13 and 1.20 and the coefficient of variation is below 0.10. Reinforcing bar data show difference among different manufacturers but there is not much difference among re-bar diameters. In the case of tendons, which are high strength materials, both of the domestic and foreign data show smaller values of the bias factor and the coefficient of variation than those of concrete and re-bar. Statistical distribution of all the material strength can be properly assumed as normal, log-normal, or Gumbel distribution after analyzing the classified data by individual construction site and manufacturer rather than the mixed data obtained from different sources in order to express the individual distribution of each structure.

Design and Implementation of IEC62541-based Industry-Internet of Things Simulator for Meta-Factory (메타팩토리를 위한 IEC62541기반 IIoT·시뮬레이터 설계 및 구현)

  • Chae-Young Lim;Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu;Sang-Hyun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.789-795
    • /
    • 2023
  • Digital-Twin are recognized as an important core technology for the realization of Smart Factories by simulating and optimizing the monitoring and predictive maintenance of manufacturing equipment and the operation of production lines in a digital space. To implement this system, we adopt the IEC62541-based OPC-UA (Open Platform Communications Unified-Architecture) Protocol, which has strengths in interoperability and connectivity between heterogeneous platforms. Therefore, In this paper, We designed and implemented an IIoT(Industry Internet of Things) system that connects heterogeneous platforms, and developed an OPC-UA simulator based on IEC 62541. We will present whether the data will be applied to the Digital-Twin Platform and whether it will work, and proceed with performance tests and evaluations. We evaluate the operation performance and OPC-UA performance of the Digital-Twin platform lightened by the proposed device, and present the optimal IEC62514-based simulator system. We proceeded with the performance evaluation of sending and receiving data with OPC-UA wrapping with the proposed simulator, and found that a lightweight Digital-Twin platform can be operated. This research can apply the OPC-UA protocol for implementing smart factory and meta-factory in the manufacturing shop floor with limited resources, avoiding the waste of time and space on the shop floor through the OPC-UA simulator. We expect that this will contribute to a significant improvement in efficiency by minimizing.

Establishment of a deep learning-based defect classification system for optimizing textile manufacturing equipment

  • YuLim Kim;Jaeil Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.27-35
    • /
    • 2023
  • In this paper, we propose a process of increasing productivity by applying a deep learning-based defect detection and classification system to the prepreg fiber manufacturing process, which is in high demand in the field of producing composite materials. In order to apply it to toe prepreg manufacturing equipment that requires a solution due to the occurrence of a large amount of defects in various conditions, the optimal environment was first established by selecting cameras and lights necessary for defect detection and classification model production. In addition, data necessary for the production of multiple classification models were collected and labeled according to normal and defective conditions. The multi-classification model is made based on CNN and applies pre-learning models such as VGGNet, MobileNet, ResNet, etc. to compare performance and identify improvement directions with accuracy and loss graphs. Data augmentation and dropout techniques were applied to identify and improve overfitting problems as major problems. In order to evaluate the performance of the model, a performance evaluation was conducted using the confusion matrix as a performance indicator, and the performance of more than 99% was confirmed. In addition, it checks the classification results for images acquired in real time by applying them to the actual process to check whether the discrimination values are accurately derived.

User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case (텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례)

  • Dine Yeon;Gayeon Park;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.77-99
    • /
    • 2020
  • Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.

Checksum Signals Identification in CAN Messages (CAN 통신 메시지 내의 Checksum Signal 식별 방법 연구)

  • Gyeongyeon Lee;Hyunghoon Kim;Dong Hoon Lee;Wonsuk Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.747-761
    • /
    • 2024
  • Recently, modern vehicles have been controlled by Electronic Control Units (ECUs), by which the safety and convenience of drivers are highly improved. It is known that a luxury vehicle has more than 100 ECUs to electronically control its function. However, the modern vehicles are getting targeted by cyber attacks because of this computer-based automotive system. To address the cyber attacks, automotive manufacturers have been developing some methods for securing their vehicles, such as automotive Intrusion Detection System (IDS). This development is only allowed to the automotive manufacturers because they have databases for their in-vehicle network (i.e., DBC Format File) which are highly confidential. This confidentiality poses a significant challenge to external researchers who attempt to conduct automotive security researches. To handle this restricted information, in this paper, we propose a method to partially understand the DBC Format File by analyzing in-vehicle network traffics. Our method is designed to analyze Controller Area Network (CAN) traffics so that checksum signals are identified in CAN Frame Data Field. Also, our method creates a Lookup Set by which a checksum signal is correctly estimated for a given message. We validate our method with the publicly accessible dataset as well as one from a real vehicle.

Deep learning algorithms for identifying 79 dental implant types (79종의 임플란트 식별을 위한 딥러닝 알고리즘)

  • Hyun-Jun, Kong;Jin-Yong, Yoo;Sang-Ho, Eom;Jun-Hyeok, Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.196-203
    • /
    • 2022
  • Purpose: This study aimed to evaluate the accuracy and clinical usability of an identification model using deep learning for 79 dental implant types. Materials and Methods: A total of 45396 implant fixture images were collected through panoramic radiographs of patients who received implant treatment from 2001 to 2020 at 30 dental clinics. The collected implant images were 79 types from 18 manufacturers. EfficientNet and Meta Pseudo Labels algorithms were used. For EfficientNet, EfficientNet-B0 and EfficientNet-B4 were used as submodels. For Meta Pseudo Labels, two models were applied according to the widen factor. Top 1 accuracy was measured for EfficientNet and top 1 and top 5 accuracy for Meta Pseudo Labels were measured. Results: EfficientNet-B0 and EfficientNet-B4 showed top 1 accuracy of 89.4. Meta Pseudo Labels 1 showed top 1 accuracy of 87.96, and Meta pseudo labels 2 with increased widen factor showed 88.35. In Top5 Accuracy, the score of Meta Pseudo Labels 1 was 97.90, which was 0.11% higher than 97.79 of Meta Pseudo Labels 2. Conclusion: All four deep learning algorithms used for implant identification in this study showed close to 90% accuracy. In order to increase the clinical applicability of deep learning for implant identification, it will be necessary to collect a wider amount of data and develop a fine-tuned algorithm for implant identification.

Patent Analysis on 5G Technology Trends from the Perspective of Smart Factory (특허 분석을 통한 스마트공장 관점의 5G 기술개발 동향 연구)

  • Cho, Eunnuri;Chang, Tai-Woo
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.95-108
    • /
    • 2020
  • The development of 5G technology, which is a next-generation communication technology capable of processing large amounts of data in real-time and solving delays, is drawing attention. Not only in the United States but also Korea, 5G is focused on supporting R&D as a national strategic technology. The strategy for the smart factory, one of the core services of the 5G, aims to increase the flexibility of manufacturing production lines. The existing wired communications devices can be replaced into wireless ones with the ultra-low-delay and ultra-high-speed characteristics of 5G. For the efficient development of 5G technology, it is necessary to keep abreast of the status and trend. In this study, based on the collected data of 1517 Korea patents and 1928 US patents, 5G technologies trend was analyzed and key technologies were identified by network analysis and topic modeling. We expect that it will be used for decision making for policy establishment and technology strategy of related industries to provide the trends of technology development related to the introduction of 5G technology to smart factories.