• Title/Summary/Keyword: 제조자원계획

Search Result 45, Processing Time 0.025 seconds

Analysis of the Effects of Recycling and Reuse of Used Electric Vehicle Batteries in Korea (한국의 전기차 사용 후 배터리 재활용 및 재사용 효과 분석 연구)

  • Yujeong Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.83-91
    • /
    • 2024
  • According to the IEA (2022), global rechargeable battery demand is expected to reach 1.3 TWh in 2040. EV batteries will account for about 80% of this demand, and used EV batteries are expected to be discharged after 30 years. Used EV batteries can be recycled and reused to create new value. They can also resolve one of the most vulnerable parts of the battery supply chain: raw material insecurity. In this study, we analyzed the amount of used batteries generated by EV in Korea and their potential for reuse and recycling. As a result, it was estimated that the annual generation of used batteries for EV began to increase to more than 100,000 in '31 and expanded to 810,000 in '45. In addition, it was found that the market for recycling EV batteries in '45 could be expected to be equivalent to the production of 1 million batteries, and the market for reuse could be expected to be equivalent to the production of 36 Gwh of batteries. On the other hand, according to the plan standard disclosed by the recycling company, domestic used EV batteries can account for 11% of the domestic recycling processing capacity (pre-treatment) ('30). So it will be important to manage the import and export of used batteries in terms of securing raw materials.

Current Status of Nanotechnology Development for Space Exploration (우주탐사용 나노기술 개발 동향)

  • Lee, Ho-Sung;Chae, Yeon-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 2008
  • Nanotechnology(NT) refers to a field of advanced micro-technology covering the creation and manufacturing of materials on the atomic and molecular scale and requires interdisciplinary study with various fields including materials science, physics, chemistry, electronics and others. Whileas nanotechnology is a kind of micro and small scaled science, space technology(ST) is one of the larger and system technologies utilizing broad fields of mechanical, materials, electronics and communication technologies. It is necessary to select and concentrate the functional items of nanotechnology for efficient application to be utilized in space technology, due to the cross-sectional characteristics of nanotechnology within nanomaterials, nanoelectronics, and nanomanufacturing. This paper provides the current state of art of nanotechnology in space technology by evaluating NASA's activities and the 9th frame of the project ANTARES(Analysis of Nanotechnology Applications in Space Developments and Systems) with the support of the German Aerospace Center (DLR), Space Flight Management, Division Technology for Space Systems and Robotics. It has shown that it is necessary to apply nanotechnology to space technology in order to achieve international competitiveness, for the nanotechnology can bring the previously impossible things to reality. Since KARI plans to send an unmanned probe to the moon's orbit and land a probe on the moon's surface in 2025, it is urgently needed to incorporate nanotechnology to national space development plan.

  • PDF

A Basic Study on the Generation of Tire & Road Wear Particles by Differences in Tire Wear Performance (타이어 마모성능 차이에 의한 타이어 마모입자 생성에 관한 기초 연구)

  • Kang, Tae-Woo;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.561-568
    • /
    • 2021
  • In this study, in order to observe the change in the amount of Tire and Road Wear Particles and the ratio of tire components in it according to the tire wear resistance performance, carried out the evaluation by varying the vulcanization reaction design of the tire tread rubber. In addition, in order to improve the reliability of the evaluation of Tire and Road Wear Particles, the evaluation was performed indoor laboratory test equipment that simulates the condition on real driving to exclude various environmental influences including minerals, driver's habits, road surface, weather, tire structure and pattern designs. After the evaluation in closed space, it is estimated that the amount of collected Tire and Road Wear Particles is 84% compared to 100% of the tire and road wear loss weight, of which 96.4~97.7% was around the road and 2.3~3.6% was in the air. As a result of analy sis of the collected Tire and Road Wear particles, the tire component existed 63~75% in the Tire and Road Wear Particles depending on the wear resistance performance of the tire.

IPv6 기반의 정보 공유 P2P 개발

  • 이재준;김유정;안철현;이영로
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.21-27
    • /
    • 2003
  • 분산컴퓨팅, 다자간 협업, 대용량 고품질의 컨텐츠 교환을 지원하는 P2P는 차세대 인터넷의 핵심 어플리케이션이 될 것이다. 본래 인터넷의 근본이었던 IP 라우팅도 P2P 방식이었다. 장비가 다양해지고, PC가 증가하게 됨에 따라 동적 IP를 사용하거나, 하나의 IP를 여러 사람이 공유하여 사용하는 복잡한 방식을 취하기 시작했다. 그러나 새로운 IP 주소들이 충분히 공급될 수 있다면, 하나의 장치 당 하나의 주소 체제가 다시 각광을 받게 될 것이고, 지금처럼 불규칙적인 동적 IP 주소를 활용하지 않아도 될 것이다. 그런 의미에서 IPv6는 풍부한 주소자원을 각 단말에 부여할 수 있어, IPv16 기반의 P2P 구축은 P2P의 성능을 최적화하는 방법이 될 것이다. 현재 P2P는 콘텐츠 공유 및 전달, 네트워크/장치(하드디스크, CPU) 리소스 공유, 다자간 원격협업, 검색, 호스팅 및 프로젝트 관리 등 다양한 방법으로 활용되고 있다. 2000년경부터 대두되기 시작한 P2P 애플리케이션은 지난 2년 동안 급속하게 늘어났으며, 특히 인터넷 사용자들은 컨텐츠를 공유/전달할 목적으로 P2P를 많이 사용하고있다. 그러나 컨텐츠의 공유에 있어 MP3, 동영상, 이미지의 전달 및 공유에 그치고 있어, P2P를 기업 환경에서 지식공유 및 전달을 위한 시스템으로 활용하는 경우는 아직 미약하다. 그러므로 본 논문에서는 조직 내에서 정보활용 능력을 제고하기 위한 방안으로 P2P 시스템을 정보 공유 시스템으로 팔용하고, P2P의 성능을 최적화 할 수 있는 IPv6 기반의 개발 방안을 제안하고자 한다. 본 IPv6 기반의 정보 공유 P2P는 IPv6 전문가 그룹을 통해 시범적으로 적응하는 것으로 시작해, 학교 및 연구소를 통한 정보지식 공유 그리고 기업 정보화 솔루션으로 활용 될 수 있다.을 제시한다. 이렇게 함으로써 최대한 고객 납기를 만족하도록 계획을 수립할 수 있게 된다. 본 논문에서 제시하는 계획 모델을 사용함으로써 고객 주문에 대한 대응력을 높일 수 있고, 계획의 투명성으로 인한 전체 공급망의Bullwhip effect를 감소시킬 수 있는 장점이 있다. 동시에 이것은 향후 e-Business 시스템 구축을 위한 기본 인프라 역할을 수행할 수 있게 된다. 많았고 년도에 따른 변화는 보이지 않았다. 스키손상의 발생빈도는 초기에 비하여 점차 감소하는 경향을 보였으며, 손상의 특성도 부위별, 연령별로 다양한 변화를 나타내었다.해가능성을 가진 균이 상당수 검출되므로 원료의 수송, 김치의 제조 및 유통과정에서 병원균에 대한 오염방지에 유의하여야 할 것이다. 확인할 수 있었다. 이상의 결과에 의하면 고농도의 유기물이 함유된 음식물쓰레기는 Hybrid Anaerobic Reactor (HAR)를 이용하여 HRT 30일 정도에서 충분히 직접 혐기성처리가 가능하며, 이때 발생된 $CH_{4}$를 회수하여 이용하면 대체에너지원으로 활용 가치가 높은 것으로 판단된다./207), $99.2\%$(238/240), $98.5\%$(133/135) 및 $100\%$ (313)였다. 각각 두 개의 요골동맥과 우내흉동맥에서 부분협착이나 경쟁혈류가 관찰되었다. 결론: 동맥 도관만을 이용한 Off pump CABG를 시행하여 감염의 위험성을 증가시키지 않으면서 영구적인 신경학적 합병증을 일으키지 않았고 좋은 혈관 개존율을 보여주었다. 따라서 동맥 도관을 이용한 Off pump CABG는 관상동맥의 협착의 정도에 따라 효율적으로 시행 시 좋은 임상결과를 얻을 수 있을 것으로 생각된다.였다. 그러나 심근 기능이나

  • PDF

A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water (알럼 및 철수산화물 흡착제의 광산배수 내 비소 흡착성능 비교연구)

  • Choi, Kung-Won;Park, Seong-Sook;Kang, Chan-Ung;Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.689-698
    • /
    • 2021
  • Since the mine reclamation scheme was implemented from 2007 in Korea, various remediation programs have been decontaminated the pollution associated with mining and 254 mines were managed to reclamation from 2011 to 2015. However, as the total amount of contaminated mine drainage has been increased due to the discovery of potential hazards and contaminated zone, more efficient and economical treatment technology is required. Therefore, in this study, the adsorption properties of arsenic was evaluated according to the adsorbents which were derived from water treatment sludge(Alum based adsorbent, ABA-500) and granular ferric hydroxide(GFH), already commercialized. The alum sludge and GFH adsorbents consisted of aluminum, silica materials and amorphous iron hydroxide, respectively. The point of zero charge of ABA-500 and GFH were 5.27 and 6.72, respectively. The result of the analysis of BET revealed that the specific surface area of GFH(257 m2·g-1) was larger than ABA-500(126~136 m2·g-1) and all the adsorbents were mesoporous materials inferred from N2 adsorption-desorption isotherm. The adsorption capacity of adsorbents was compared with the batch experiments that were performed at different reaction times, pH, temperature and initial concentrations of arsenic. As a result of kinetic study, it was confirmed that arsenic was adsorbed rapidly in the order of GFH, ABA-500(granule) and ABA-500(3mm). The adsorption kinetics were fitted to the pseudo-second-order kinetic model for all three adsorbents. The amount of adsorbed arsenic was increased with low pH and high temperature regardless of adsorbents. When the adsorbents reacted at different initial concentrations of arsenic in an hour, ABA-500(granule) and GFH could remove the arsenic below the standard of drinking water if the concentration was below 0.2 mg·g-1 and 1 mg·g-1, respectively. The results suggested that the ABA-500(granule), a low-cost adsorbent, had the potential to field application at low contaminated mine drainage.

Investment policy and trends of agri-food R&D in major overseas countries (해외 주요국가의 농·식품 R&D 투자 정책 및 동향)

  • Hong, Seok-In
    • Food Science and Industry
    • /
    • v.53 no.4
    • /
    • pp.410-421
    • /
    • 2020
  • Regarding a long-term strategic plan in the food and agriculture sector, R&D policies and investment trends in major overseas countries are reviewel. The importance of efficient resource management is emphasized along with continuous government support for R&D in the agri-food industry. In response to facing social issues such as climate change, food security, food safety, health, and environment, research and innovation agenda is mainly focused on harmony between economy and environment, human nutrition and health as well as animal and plant health, and an integrated ecosystem approach. Particularly in the food sector, public investment is generally made in food safety, nutrition and health, and private investment for food processing and manufacturing. Public-private collaboration is carried out in order to enhance the efficiency of R&D innovation and development strategies in the agri-food industry.

Design and Analysis of Cell Controller Operation for Heat Process (열공정에 대한 셀 콘트롤러 운영의 설계와 해석)

  • So, Ye In;Jeon, Sang June;Kim, Jeong Ho
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.22-31
    • /
    • 2020
  • The construction and operation of industrial automation has been actively taking place from manufacturing plan to production for improving operational efficiency of production line and flexibility of equipment. ISO/TC184 is standardizing on operating methods that can share information of programmable device controllers such as PLC and IoT that are geographically distributed in the production line. In this study, the design of the cell controller consists of PLC group and IoT group that perform signals such as temperature sensors, gas sensors, and pressure sensors for thermal processes and corresponding motors or valves. The operation and analysis of the cell controller were performed using SDN(Software Defined Network) and the three types of process services performed in thermal processes are real-time transmission service, loss-sensitive large-capacity transmission service, and normal transmission service. The simulation result showed that the average loss rate improved by about 17% when the traffic increased before and after the application of the SDN route technique, and the delay in the real-time service was as low as 1 ms.

  • PDF

Proposal of a Factory Energy Management Method Using Electric Vehicle Batteries (전기자동차 배터리를 활용한 공장의 에너지 관리 방안 제안)

  • Nam-Gi Park;Seok-Ju Lee;Byeong-Soo Go;Minh-Chau Dinh;Jun-Yeop Lee;Minwon Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.67-77
    • /
    • 2024
  • Increasing energy efficiency in factories is an activity aimed at optimizing resource allocation in manufacturing processes to establish production plans. However, this strategy may not apply effectively when night shifts are unavoidable. Additionally, continuous fluctuations in production requirements pose challenges for its implementation in the factory. Recently, with the rapid proliferation of electric vehicles (EVs), technology utilizing electric vehicle batteries as energy storage systems has gained attention. Technology using these batteries can be an alternative for factory energy management. In this paper, a factory energy management method using EV batteries is proposed. The proposed method is analyzed using PSCAD/EMTDC software, considering the state of charge of EV batteries and Time-of-Use (TOU) rates. The proposed method was compared with production scheduling established considering predicted power usage and TOU rates. As a result, production scheduling saved 4,152 KRW per day, while the proposed method saved 7,286 KRW in electricity costs. Through this paper, the possibility of utilizing EV batteries for factory energy management has been demonstrated.

Comparison Study on the Moving Line Optimization in Agricultural Industry using Simulation Tool (시뮬레이션을 활용한 농식품 유통물류 동선최적화 설계방안 비교연구)

  • Park, Mueng-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.163-170
    • /
    • 2015
  • This research is to focus on the method of moving line optimization in Agricultural Industry, especially Garak Wholesale Market Modernization Project, by using simulation tool. As everybody knew, it's very difficult to apply the SCM operation rules in Agricultural Industry, because the standardization system in Agricultural Industry was not completed. The five flow management factors, vehicle moving line management, customer moving line Management, Logistics Device Moving Line Management, Working Person Moving Line Management, Product display moving line management, are needed to be optimized on the basis of standardization rules, and to achieve this will be the good infrastructure to make the Agricultural SCM system. It's very different between the SCM structure of manufacturing industry and logistics industry and the SCM structure of Agricultural Industry, because the SCM in manufacturing is occur in the basis of flow management, on the contrary, the SCM of Agricultural Industry is on the basis of activity management. For these reason, this study is the first approach to apply the simulation method in the part of moving line optimization in Agricultural SCM, and in near future, This study will help all designers and operators to apply the simulation work in the part of agricultural SCM, and we hope that next advanced study will continue by using this study.

A Study of Medicinal Plants for Applications in Functional Foods 1. Effects of Schizandrae fructus on the Regional Cerebral Blood Flow and Blood Pressure in Rats (기능성 식품으로의 활용을 위한 한약자원에 관한 연구 1. 오미자 열수추출물이 흰쥐의 국소 뇌혈류량과 혈압에 미치는 영향)

  • 박성혜;한종현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • The purpose of this study was to measure the changes of regional cerebral blood flow (rCBF) and blood pressure (BP) in rats, following the intravenous injection of Schizandrae fructus water extract. The measurement was continually monitored by laser-doppler flowmeter and pressure tranducer in anesthetized adult Sprague-Dawley rats for 2 hours to 2 hours and a half through the data acquisition system composed of MacLab and Macintosh computer. The result of this experiment was as followed. Schizandrae fructus increased the changes of rCBF in rats significantly. The rCBF of Schizandrae fructus did not change by pretreated propranolol, atropine, L-NNA and indomethacin. But the rCBF of Schizandrae fructus was increased by pretreated methylene blue. Schizandrae fructus decreased the changes of BP, significantly. The BP of Schizandrae fructus did not change by pretreated propranolol, atropine, L-NNA and indomethacin. But the BP of Schizandrae fructus was decreased by pretreated methylene blue. There results indicated that Schizandrae fructus can increase the rCBF and decrease the BP, that is related to guanylyl cyclase activity.