• Title/Summary/Keyword: 제어력비

Search Result 4, Processing Time 0.016 seconds

Exact Solution for Resistance Capacity utilizing Bingham Model of MR Dampers under Collapse Load (붕괴하중을 받는 MR 댐퍼의 Bingham 모델을 이용한 저항성능 정해)

  • Seong, Ji-Young;Min, Kyung-Won;Kim, Jin-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.234-240
    • /
    • 2011
  • This study deals with progressive collapse of a structure retrofitted with MR dampers. In order to assess their effect of mitigation which prevents progressive collapse, control force ratio is defined by friction force of MR dampers divided by external force. First, simple model of a structure with MR dampers is suggested. Using the model, exact solution with the control force ratio is obtained. When and where the system is stopped is predicted by the derived solution. Through the dissipated energy by MR dampers during collapse event, equivalent damping ratio is derived. Finally, comparison of exact and equivalent solutions is presented.

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF

Design of Friction Dampers for Seismic Response Control of a SDOF Building (단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계)

  • Min, Kyung-Won;Seong, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

Response Reduction of a SDOF Structure based on Friction Force Ratio of MR Controller (MR제어기의 마찰력비에 따른 단자유도 구조물의 응답감소)

  • Seong, Ji-Young;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.435-443
    • /
    • 2010
  • This study presents key parameters for the structure installed with MR controller in reducing its responses. MR controller is regarded as Bingham model of which control forces are frictional and viscous ones. The parameters are identified as friction force ratios, $R_f$ and $R_h$ which are, respectively, ratio of MR controller friction force to static restoring force for free vibration and ratio of the friction force to amplitude of harmonic force. Structure-MR controller system shows nonlinear response behavior due to friction force. Energy balance strategy is adopted to transform the behavior to linear one with equivalent damping ratio. Finally, proposed equivalent linear process is compared to the nonlinear one, which turns out to give acceptably good results.