• Title/Summary/Keyword: 제벡효과

Search Result 17, Processing Time 0.027 seconds

Study on Application of Cooling System of Automotive Engine for Thermoelectric Generator (열발전소자의 자동차 엔진 냉각시스템 적용 연구)

  • Park, Myungwhan;Hur, Taeyoung;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • Thermoelectric generator, which is known as using Seebeck effect, have been widely applied in many industrial parts, for instance, from submarine to equipments capable of producing hot or cooling water. Its usefulness was verified in terms of producing electric power using temperature difference and vice versa. Application on thermoelectric generator has been mainly forced on exhaust gas of automotive engine so far. In this study, the possibility was investigated whether electric power could be produced by using cooling water in automotive engine. As the result, it showed that electric power had differences depending on shapes of power auxiliary apparatus and, in this experiment, maximum of electric power was 1.5 voltage.

GeTe계 열전재료의 헤링본 구조와 열전 특성

  • Kim, Hyeon-Ho;Gwak, Jae-Ik;Jeong, Hye-Rin;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.127-127
    • /
    • 2018
  • 열전변환기술은 폐열을 전기로 변환하는 제벡효과를 이용한 기술이다. 열전변환효율은 재료의 성능에 따라 결정되며 성능지수 $ZT=S^2{\sigma}T/k$로 표현할 수 있다. 여기서 S는 제벡계수, ${\sigma}$는 전기전도도, k는 열전도도, T는 절대온도이다. GeTe계 열전재료는 $200{\sim}500^{\circ}C$에서 쓰이는 중온용 열전재료이다. 높은 성능지수를 가지기 위해서는 파워펙터($S2{\sigma}$)의 향상과 열전도도의 감소가 필요하다. GeTe계 화합물은 Ge의 공공 때문에 높은 캐리어 농도를 가지게 되고, 이로 인해 낮은 제벡계수 값과 높은 열전도도를 가지게 된다. 따라서 GeTe계 화합물의 성능 향상을 위해서는 캐리어농도 제어가 필수적이다. TEM을 통하여 GeTe를 관찰하면 밝고 어두운 콘트라스트들이 형성되어 있는 헤링본구조를 확인 할 수 있다. 콘트라스트를 보여주는 작은 평행사변형 하나는 헤링본구조의 가장 작은 단위인 도메인이며 이 도메인들이 특정한 방향으로 배열되어 콜로니를 형성하고 콜로니들이 특정한 방향으로 배열되어 헤링본구조를 이룬다. 헤링본의 폭과 길이를 제어 할 수 있다면 GeTe계 화합물의 열전특성 향상에 영향을 미칠 수 있을 것으로 예상된다. 따라서 본 연구에서는 GeTe계 화합물내에 도핑원소 첨가를 통한 캐리어 농도제어와 도핑원소 첨가에 따른 헤링본구조의 변화에 관하여 연구하였다.

  • PDF

A Study of Thermoelectric Effect in Resistance Spot Welding of Aluminium Alloy (알루미늄 합금의 저항점용접에서의 열전 효과에 대한 연구)

  • ;K. T. Rie
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.10-19
    • /
    • 1998
  • The erosion of electrode in spot welding of aluminium alloy by direct current is dependent on the electric polarity. The positive electrode is much more eroded than the negative one. To explain this phenomenon, Peltier effect has been generally accepted as a unique theory. In this study Peltier effect was evaluated by calculations on the basis of some references and experiments. The difference of heat generated by Peltier effect on both electrode surfaces was, however, only 4% of total heat generated during wel- ding. Because of insufficient explanation, Kohler theory, which is mainly affected by thin oxide film, was introduced. A theoretical calculation showed 17% of the temperature difference between the positive and negative electrode, in case "surface voltage" resulted from oxide film was 30% of total contact voltage. This revealed that the erosion of electrode could be more affected by Kohler theory than effect.an effect.

  • PDF

A Study for Thermoelectric Generator System And Caused Low Thermoelectric Power (열전발전량에 영향을 미치는 요인과 최적의 열전발전시스템에 관한연구)

  • Moon, Chae-Joo;Cheang, Eui-Heang;Lim, Jung-Min;Park, Sang-Jin;Kim, Tae-Gon;Kim, Young-Gu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.68-74
    • /
    • 2008
  • This paper describes the causes and effects that have influence on thermoelectric generation. If heat transfer is unequal to thermoelectric modules, we could not get the maximum thermoelectric power. So, by experiment, we analysed the differences of power generation according to the state of the contact between thermoelectric module and heat source. And with the variation of heat transfer area, the generated power was analysed also. Using the experimental results we proposed a thermoelectric generation system.

  • PDF

A Effect of Fluid-assisted Sliding on Stress Relaxation of Bi-Te Modules in Thermoelectric Generation System (열전발전용 Bi-Te module에서 미끄럼에 따른 열응력 완화 특성)

  • 서창민;우병철
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.62-97
    • /
    • 2000
  • Recently the research for utilization of waste heat produced from electric power plants, casting factories, heat treating factories or commercial are being afforded by the need for energy saving. The objective of this study is to develop a thermoelectric generation system which unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper a thermoelectric technology on a optimum system design method and efficiency and cost effective thermoelectric element on order to extract the maximum power output from energy conversion of waste energy. It is shown that the longitudinal stresses of module contacted with two point constrained Al tubes could be released more than those with a one-point constrained.

  • PDF

Temperature Control of Aluminum Plate by PWM Current Control of Peltier Module (펠티어 소자의 PWM 전류제어를 이용한 알루미늄 판의 온도제어)

  • Pang, Du-Yeol;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.60-67
    • /
    • 2006
  • This paper presents the temperature control in aluminum plate with Peltier module. From the experimental work, Peltier module is used to control the temperature of small aluminum plate for both heating and cooling with the control of current and fan ON/OFF. And current control of Peltier module was accomplished by PWM method. As a result of experiments, it is proper that operate cooling fan only while cooling duration and there exist a proper cooling current to drop temperature rapidly. It takes about 125sec to control temperature of aluminium plate between $30^{\circ}C$ and $70^{\circ}C$ and about 70sec between $40^{\circ}C$ and $60^{\circ}C$, in ambient temperature $28^{\circ}C{\sim}29^{\circ}C$ while cooling fan is operated only cooling duration. With the cooling current, temperature control of aluminum plate was accomplished more rapidly in comparison without cooling current. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

A study on the application of thermoelectric module to electric vehicle for charge (열전소자를 적용한 전기자동차 충전에 관한 연구)

  • Lee, Jin-Wook;Jung, Soo-Sung;Kim, Young-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.732-734
    • /
    • 2015
  • Because of the increase in information and knowledge sharing in various fields, technological development across various industries were growing energy demand. Advanced technologies was done to find alternative energy sources. Relevant studies are under way to promote efficiency of energy source. The problem of climate change is not the only reason why made electric cars. it is because of the efficiency of the utilization of alternative energy sources has improved. In this paper we focuses about usage of thermoelectric effect with electric cars.

  • PDF

Study of Reduction of Mismatch Loss of a Thermoelectric Generator (열전발전 시스템의 부정합손실 저감방안 연구)

  • Choi, Taeho;Kim, Tae Young
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.294-301
    • /
    • 2022
  • In this study, a multi-layer cascade (MLC) electrical array configuration method for thermoelectric generator consisting of plural number of thermoelectric modules (TEMs) was proposed to reduce mismatch loss caused by temperature maldistribution on the surfaces of the TEMs. To validate the effect of MLC on the mismatch loss reduction, a numerical model capable of reflecting multi-physics phenomena occuring in the TEMs was developed. MLC can be employed by placing a group of TEMs experiencing relatively low temperature differences in an electric layer with more electrical branches while locating a group of TEMs experiencing relatively high temperature differences in an electric layer with less electrical branches. The TEMs were classified using the temperature distribution obtained by the numerical model. A MLC with an optimal electrical branch ratio showed a 96.5% of electric power generation compared to an ideal case.

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Fabrication and Performance of $Bi_{0.5}Sb_{1.5}Te_{3}/Bi_{2}Te_{2.4}Se_{0.6}$ Thin Film Thermoelectric Generators ($Bi_{0.5}Sb_{1.5}Te_{3}/Bi_{2}Te_{2.4}Se_{0.6}$계 박막형 열전발전 소자의 제작과 작동 특성)

  • Kim Il-Ho;Jang Kyung-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.180-185
    • /
    • 2006
  • Microwatt power level at relatively high voltage(order of volt) was produced by $Bi_{0.5}Sb_{1.5}Te_{3}/Bi_{2}Te_{2.4}Se_{0.6}$ thin film thermoelectric generators, and maximum output power varied with temperature difference in the square-law relation. Output voltage and current were possible to control by changing the way of electrical connection as well as the number of stacking plate-modules. Variation of open circuit voltage and short circuit current with temperature difference showed a linear relationship. There were, however, some differences in variations; open circuit voltage were dependent on the number of plate-module when connected in series, but it was not for parallel connection. On the other hand, short circuit current showed the opposite behavior to the case of open circuit current.