• Title/Summary/Keyword: 제로에너지스쿨

Search Result 2, Processing Time 0.023 seconds

Energy Performance Evaluation of A Primary School Building for Zero Energy School (제로에너지 스쿨을 위한 초등 교육시설의 에너지 성능평가)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Park, Jae-Wan;Kim, Hyo-Jung;Lee, Chul-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-126
    • /
    • 2009
  • This study analyzed the standard school's energy usage and patterns as the zero-energy goal of primary school building, and proposed the energy reduction process of school building using energy analysis computing simulation tool. As a analysis simulation tool, Visual DOE 4.0 is used. For analysis of actual energy usage, selected primary school that is standard in the nation's energy consumption. Standard of the school's energy consumption analysis were devided into electric and gas energy. Input parameters of the simulation program based on the literature material and field survey material. after, but it was calibrated to comparison with the standard school's energy consumption. Finally, its energy usage analyzed by component and made the priority order of energy saving. Applied energy saving technologies are envelopment insulation, high efficiency lighting, high performance HAVC system and used active equipment system of solar collector and photovoltaic generation for additional savings.

  • PDF

A methodology for verification of energy saving performance of Zero Energy School (ZES) (Zero Energy School(ZES) 에너지절감 성과 검증을 위한 방법론 연구)

  • Lee, Hangju;Ahn, JongWook;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Domestic buildings account for 25% of national greenhouse gas emissions and 20% of energy consumption, so energy efficiency improvement of buildings is recognized as the main target of national energy demand management. To improve the energy efficiency of the building, policies are implemented by preparing "zero-energy building national roadmaps" and enhancing the efficiency of national energy demand management through early activation as a result of expansion of the mandatory zero-energy building. Also, there is a growing need to verify the performance of energy savings after the construction is completed. Therefore, methods for evaluating energy performance of buildings should be suggested. This paper aims to develop and present methods for verifying energy performance of Zero Energy School, which can be applied internationally, by visiting domestic schools on-site at the same time as international standards and guidance analysis.