• Title/Summary/Keyword: 제련실험

Search Result 58, Processing Time 0.026 seconds

Study on the Restoration of Ancient Smelting and Smithing Technologies in the Jungwon Area (재현실험을 통한 중원지역 고대 제련-단야기술의 공정별 특성 연구)

  • Lee, Eunwoo;Kwak, Byeongmoon;Kim, Eunji;Han, Youngwoo;Park, Chonglyuck
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.519-532
    • /
    • 2017
  • Studies on ancient ironmaking technologies are primarily based on archaeological surveys and scientific analysis data, and technological systems are examined by comparing the results of restorative experiments. In this study, to examine the ancient iron production technologies such as smelting and smithing in the Jungwon area, a restoration experiment was conducted based on archaeological data, and the iron and slag, etc. produced in the experiment were analyzed. Further, the changes in physicochemical properties due to the smelting of the raw material, specifically, iron ore were determined, and the smithing process, which involves fabrication of ironwares, was analyzed along with the characteristics of each step. In the case of smelting, increasing recovery rates and production of high-quality primary iron material were important for the following processes. For the iron bars produced through the smithing process, it was found that quality improvements made by reducing physical defects such as inclusions or gas holes were more important than the composition of the iron itself. The study also yielded comparative study data for various byproducts, such as smithing slag, which could be utilized in other ironmaking technology studies.

Properties of Chemical Grade and Smelting Grade Aluminium Trihydroxide (화학제품용 및 금속제련용 수산화알루미늄 제품 특성)

  • Kim, Dae-Woong;Baik, Yong-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.822-828
    • /
    • 2001
  • Bayer process is based on the extraction of aluminium trihydroxide from bauxite. The process is operated with the several criteria such as primary crystal size, particle size distribution and yield etc.. In this study basing on the previous results, an investigation on the effect of chemical grade and smelting grade aluminium trihydroxide precipitation condition were undertaken. As a result, particle size was 42∼44${\mu}$m form chemical grade product and 74∼77${\mu}$m for smelting grade product. The yield and solubility by acid of chemical grade product was higher than smelting grade product. The attrition index of smelting grade product was lower than that of other commercial product because primary crystal size of the smelting grade product was small.

  • PDF

Experiment on the Ancient Smelting-Smithing Technologies - A Study on the Proper Experimental Temperature - (고대 제련-단야기술 복원을 위한 실험적 연구 - 적정 조업온도 연구를 중심으로 -)

  • Lee, Eunwoo;Kwak, Byeongmoon;Kim, Eunji;Park, Jongryuk
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.581-593
    • /
    • 2018
  • Studies on ancient iron production technologies still have challenges to overcome, although there have been many results that have enabled us to understand these old technologies. The purpose of this study is to propose a suitable temperature condition for smelting experiments. The target for reconstruction is a smelting-smithing process in the ancient Jungwon area, and the experiment was designed on the basis of published research, such as archaeological evidence. Experiment A was performed at a low temperature to produce low-carbon iron, while Experiment B was conducted at a relatively high temperature to synthesize high-carbon iron. In addition, the low-carbon iron proved to be suitable for the smithing process. Moreover, aspects such as the microstructure and chemical composition of the slag and the surface condition of the furnace wall showed that the low-temperature smelting process was closer to the ancient method. It is important to mention the premise that the reconstruction of ancient technology can be achieved when the results of an experiment replicate the conditions of a real site. The results show that direct smelting, which produces low-carbon iron bloom under a low-temperature condition, should be the subject of smelting experiments concerning the iron production technologies of the ancient Jungwon area.

Strength and sulfuric acid resistance properties of cement mortar containing copper slag (동 제련 슬래그를 사용한 시멘트 모르타르의 강도 및 황산저항 특성)

  • Hong, Chang Woo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.101-108
    • /
    • 2016
  • Each year, more than seven hundred thousand tons of copper slag are generated in Korea as a byproduct during the production of copper. Due to the large amount of copper slag produced, there has been increased interest in the use of copper slag as a construction material. To evaluate the potential of copper slag as a construction material, laboratory evaluations were conducted in this study, and three particle shapes and replacement rates of river sand were selected as experimental variables. Strength, air-void characteristics, and sulfuric acid resistance were the three properties evaluated to assess whether copper slag can be used as a construction material. Test results indicate that the gradation of copper slag has an effect on strength, and the maximum strength was achieved when 60 % of river sand was replaced with copper slag. In addition, when compared with ordinary Portland cement mortar, replacing river sand with copper slag reduced air void size and increased sulfuric acid resistance.

Characteristics of fresh mortar with particle size and replacement ratio of copper slag (동제련 슬래그의 입도 및 잔골재 치환율 변화에 따른 시멘트 모르타르의 특성)

  • Hong, Chang Woo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • It is estimated that over 2 million tons of non-ferrous wastes are generated after refining. Up to now, most researches were focused on extracting precious metals and there were very few research on the utilization of the slag byproduct. In this study, we studied to evaluate whether copper slag could be used as aggregates in concrete. Fresh mortar were evaluated on the particle size and replacement ratio of the copper slag with river-sand. Experimental results indicated that flow, air content and drying shrinkage of concrete varied with particle size, which confirmed that proper classification of copper slag is very important. And, setting time and unit weight of the concrete increased with replacement ratio. When particle size of the slag was similar to the river-sand, concrete with copper slag showed slump, air content, setting time, drying shrinkage and unit weight became larger compared to the concrete using river-sand only. Therefore, it is believed that proper classification and replacement ratio should be optimized for the effective use of slag in concrete.

The Fluidity Properties of High Strength Concrete adding Copper Slag as Mineral Admixture (동제련 슬래그를 혼입한 고강도 콘크리트의 유동특성에 관한 연구)

  • Lee, Dong-Un;Yoon, Jong-Jin;Kim, Dae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.271-279
    • /
    • 2016
  • This study examines the properties of high-fluidity concrete after adding copper slag as a mineral admixture. For this purpose, the replacement ratio of cement to copper slag was varied to 0, 10, 20, 30, 40, and 50%. A slump flow test, reach time slump flow of 500 mm, and a U-Box and O-lot test were conducted on the fresh concrete. The compressive strength of the hardened concrete was determined at 3, 7, 14 and 28 days. According to the test results, the workability, compaction, and compressive strength of the high-fluidity concrete increased when replacing 30% of the cement with copper slag. These parameters decreased for all material ages with more than 30% copper slag, which was the optimal mixture ratio.

Fabrication of Casting Pig Iron from Copper Smelting Slag by Carbothermic Reduction (탄소열환원 반응에 의한 동제련슬래그로부터 주철용 선철 제조 연구)

  • Choi, Moo-Sung;Choi, Dong-Hyeon;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.59-67
    • /
    • 2019
  • This study was conducted to fabrication pig iron containing copper and to reduce sulfur content pig iron. Roasting test was conducted for 1 ~ 9 hours at each temperature of $500^{\circ}C$, $700^{\circ}C$, and $900^{\circ}C$. In addition, the effect of oxygen partial pressure with 0.5, 0.8, and 1 atm was carried out for 30 minutes at $900^{\circ}C$. It was found that there is no effect to reduce sulfure in pig iron through roasting and oxygen partial pressures. The addition of CaO with 15 wt.% was found to reduce sulfur content up to 0.001 wt.%. The suitable temperature and reactive time for carbothermic reduction were $1600^{\circ}C$ and 30 minutes which shows the highest recovery rate of iron from the copper slag.

구리 폐촉매 재처리

  • Lee, Gwang-Ho;Lee, Seung-Gon;Sin, Seung-Ho;Song, Yun-Seop
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.05a
    • /
    • pp.59-65
    • /
    • 2004
  • 동제련 공정중 Smelting에서 SiO2가 없으면 산화에 의한 생성물은 Molten Cu-Fe-O 'Oxysulphide' 와 Solid Magnetite가 된다. 이 생성물은 Cu-rich Liquid와 Cu-dilute Liquid로 분리가 불가능하다. Smelting의 목적이 Cu가 높은 Matte와 산화된 불순물의 효과적인 분리에 있으므로 이와 같은 분리가 불가능한 혼합상태를 분리해 주어야 한다. 이때 SiO2가 첨가되면 Cu-rich 상인 Matte가 FeO-rich상인 Slag로의 분리가 가능해진다. 이러한 의미에서 동제련에 있어서 규사의 성분은 매우 중요하며 현재 재생사를 규사로 대체 사용하고 있다. 한편 실리콘 모노머 합성 공정인 금속 규소와 접촉 물질(Contact Mass, 구리촉매와 조촉매)을 반응시켜 (Si+CH3Cl ${\rightarrow}$ (CH3)2SiCl3) 실리콘 모노머를 생산하는 공정중 반응이 끝난 접촉물질인 구리 폐촉매가 발생되는데 주요성분이 Cu 12%, Si80%로 재생사와 유사하여 동제련에 투입 가능 여부를 판단하기 위하여 각 공정에서의 용융실험을 통하여 결론을 도출하였고, 실 조업 Test를 거쳐 처리하게 되므로 구리 회수 및 폐기물로써의 매립을 중지 할 수 있었다.

  • PDF

Material Characteristics of Smelting Slags Produced by Reproduction Experiment of Ancient Iron Smelting : According to Ca Content (고대 제철기술 복원실험에서 산출된 제련재의 칼슘함량에 따른 재료학적 특성)

  • Lee, So Dam;Cho, Nam Chul;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.297-312
    • /
    • 2017
  • In the ancient iron-making process, a slag former was often added so that iron and other minerals in the ore could be smoothly separated. However, there are insufficient data for judging whether a slag former was added. Thus, in this study, we conducted a smelting experiment to understand the material characteristics of a steel structure that differed depending on the addition of a slag former. It was found that the steel structure produced in the first experiment had a total Fe content of 39.45-52.94 wt%, which decreased to 34.89-38.92 wt% in the second and third experiments. CaO compounds such as calcite, gehlenite, and hercynite appeared, in addition to iron oxides, after the addition of a slag former. As a result of an assessment of whether a slag former was added by comparing the ratio between the components, it was found that the ratio of $CaO/SiO_2$ was 0.42. From a comparative analysis of $Al_2O_3/SiO_2$ and $CaO/SiO_2$, it was judged that the ratio of $Al_2O_3$ and $SiO_2$ can be utilized as an index to judge similar systems of smelting process (ore, furnace wall, and fuel).

A Study on the Metallurgical Characteristic of Hammer Scale Produced through Traditional Iron-making Experiments (전통 제철실험을 통해 생산된 단조박편의 재료과학적 특성 연구)

  • Cho, Sung Mo;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.738-747
    • /
    • 2021
  • This study attempted to investigate the metallurgical characteristic through material scientific analysis of hammer scale produced as a direct smelting method restoration experiment for each raw material of iron. To this end, four hammer scale groups were set up, respectively, by experimenting with Gyeongju-Gampo Iron sand and Yangyang Iron ore. For the analysis, principal component analysis, compound analysis, microstructure observation, and chemical composition were confirmed. As a result of principal component analysis, as forging and refining progressed, the content of Fe increased and the content of non-metallic objects decreased. As a result of compound analysis, iron oxide-based compounds were identified. As a result of confirming microstructure and chemical composition, Wüstite and Fayalite were observed overall, and agglomerated Wüstite were observed in some. Magnetite on shape of polygon and pillar was observed. In addition, it was confirmed that internal defects, impurities, and non-metallic interventions gradually decreased. In the future, it is necessary to investigate the metallurgical characteristic through material scientific analysis of hammer scale produced through restoration experiments using various raw material of iron, and compare them with those excavated from Iron manufacture ruins.