• Title/Summary/Keyword: 제동장치

Search Result 290, Processing Time 0.025 seconds

Development of a Procedure to Calculate Principal Internal Forces for the Strength Design of a Forklift Truck Brake System (지게차량 제동장치 시스템 강도설계를 위한 주요 내력 계산 프로시져 개발)

  • 유홍희;박근배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.27-36
    • /
    • 1997
  • For the strength design of the brake system of a forklift truck, a procedure to calculate the internal forces acting on the system is presented in this paper. Vehicle dynamics, brake system kinematics, and internal force equilibrium analysis are integrated into the procedure. Design parameters such as stopping distance, maximum decceleration, and maximum torque generated by pedal force are considered in the vehicle dynamics, and geometric parameters of the brake system are considered in the brake system kinematics. With the two analysis results obtained, the internal forces acting in the brake system are finally calculated in the procedure.

  • PDF

The Design and Manufacture for Wheelchair ABS (휠체어 ABS에 대한 설계 및 제작)

  • 김세환;이종선
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.312-316
    • /
    • 2003
  • This paper is aim to the design and manufacture for wheelchair ABS using the rachet wheel. Quick and logical evaluations on the design and manufacture of wheelchair ABS can be judged from design to manufacture process. In generally, design change is occur to change of process order. Also, this paper is object to reduced process errer.

  • PDF

A Evaluation of Emergency Braking Performance for Electro Mechanical Brake using Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기를 적용한 전기기계식 제동장치의 비상제동 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Joon-Hyuk;Kim, Seog-Won;Kim, Sang-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.170-177
    • /
    • 2020
  • This study examined the clamping force control method and the braking performance test results of an electromechanical brake (EMB) using braking test equipment. Most of the studies related to EMBs have been carried out in the automotive field, dealing mainly with the static test results for various control methods. On the other hand, this study performed a dynamic performance evaluation. The three-phase interior permanent magnet synchronous motor (IPMSM) was applied to drive the actuator of the EMB, and the analysis was verified by JMAG(Ver. 18.0), which is finite element method (FEM) software. The current control, speed control, and position control were used for clamping force control of the EMB, and the maximum torque per ampere (MTPA) control was applied to the current controller for efficient control. The EMB's emergency braking deceleration performance was tested in the same way as conventional pneumatic brake systems when the wheel of a train rotates at 110 km/h, 230 km/h, and 300 km/h. The emergency braking time, with the wheel stopped completely at the maximum rotational speed, was approximately 73 seconds. The similarity of the braking time and deceleration pattern was verified through a comparison with the performance test results of the pneumatic brake system applied to the next generation high-speed railway vehicle (HEMU-430X).

A Study for brake distance according to a car and rail conditions (차량과 레일 조건에 따른 제동거리에 관한 고찰)

  • Jeon, Woon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1943-1952
    • /
    • 2011
  • Rail vehicle brakes partly or completely transform the kinetic energy of moving vehicles into other forms of energy, in order to reduce the speed, and if necessary to bring them to a halt. To fulfil these requirements, the effect of a certain brake force is necessary and especially it is considered that the brake force is a important device to rail vehicles as a mass transit. The brake distance is a criterion for measuring brake force. The brake force is measured via dozens of brake distance test before its service operation. The brake distance is influenced by cars and rail conditions; weight of cars, speed on the verge of braking, temperature of brake disk and condition of the upper side of rail, etc. Therefore we will study how the these factors impact with the brake distance via a real test results.

  • PDF

On the Physical Mechanism of Wheel/Rail Adhesion (Wheel/rail의 점착현상의 물리적 이해)

  • 전규찬;황동환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1995.06b
    • /
    • pp.7-13
    • /
    • 1995
  • 현재 교통인구 비중에 큰 비중을 차지하고 있는 철도 차량은 기술의 발전으로 인한 고속화에 성공하여 300km/h대의 속도를 달성하기에 이르렀다. 열차가 고속화됨으로 인하여 열차 주행시 운동에너지가 더욱 커졌고 이를 소산하기 위한 제동 역시 더욱 중요하게 되었다. 열차의 제동시 중요한 점은 wheel의 skidding을 방지함으로 wheel의 편마멸을 줄이는 것이며 이를 위해선 제동장치의 설계시 wheel과 rail간의 점착현상의 이해가 필수적이다. 제동력이 점착력보다 클 경우는 skidding이 발생하며 제동력이 점착력보다 작은 경우는 충분한 제덩을 하지 못한다는 것을 의미한다. 그러므로 열차의 제동장치를 설계함에 있어서 점착계수는 필수적인 요소가 되었으며 미국, 일본, 독일 등의 선진 각국에서는 점착계수를 측정하여 그 특성을 파악하려는 실험이 실험실 및 실차 차원에서 많이 행하여졌다. 각각 다른 접척조건, 속도 등에 따른 실험이 진행되어 왔으나 각 연구의 결과는 조금씩 다른 결향을 나타내었고, 점착현상에 관한 물리적인 설명은 못하고 있는 실정이다. 본 연구에서는 wheel과 rail의 접촉인 경우에 있어 점착현상의 변화를 속도, 하중, 접촉조건에 따른다고 보고 점착현상의 특성을 각각 sliding, pure rolling실험을 통해 파악하고 기타 참고문헌에서 발표된 점착계수와 비교하여 물리적으로 이해하고자 하였다.

  • PDF

Study on the Inspection Standards of Motorcycle Brake System (이륜자동차 제동장치 검사기준에 관한 연구)

  • Lim, Jaemoon;Hong, Seungjun;Ha, Taewoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.4
    • /
    • pp.18-23
    • /
    • 2016
  • The objective of this study is to present the inspection standards of motorcycle brake system affecting motorcycle traffic accident. The inspection standards of motorcycle brake system recommended by CITA (International Motor Vehicle Inspection Committee) are studied. The brake performance for preventing the traffic accident is assessed by the brake efficiency. Considering the KMVSS (Korean Motor Vehicle Safety Standards) and the inspection standards of CITA, United Kingdom and Japan, the brake performance in the inspection standards of motorcycle is suggested. It is recommended that the efficiency of independent front and rear brakes are 40% and 27%, respectively. It is recommended that the efficiency of combined front and rear brakes is 50%.

Analysis of Natural Frequencies and Squeal Noise of KTX Brake Unit (KTX 제동장치의 고유진동수와 스퀼소음 분석)

  • Goo, ByeongChoon;Na, InKyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.954-961
    • /
    • 2014
  • Brake squeal noise of KTX is very uncomfortable to passengers and workers in stations. A lot of study has been conducted to inquire into the mechanism of the squeal noise. But understanding of the brake squeal noise is still challenging. In this study, we developed a full-scale tester equipped with a KTX mechanical brake unit. And we measured the vibrational characteristics of each component of the brake unit and compared them with frequency response functions of brake squeal noise measured also in the tester. It was found that the brake squeal noise was more closely related to the vibrational characteristics of the brake pads and hangers in friction condition than those of free components.

A Theoretical Study on Fuel Economy Improvements by Pneumatic Type Braking Energy Regeneration System Using the Scroll Mechanism (스크롤 기기 이용 공압식 회생제동시스템의 연비향상 효과에 관한 연구)

  • Shin, Dong-Gil;Kim, Young-Min;Kim, Yong-Rae
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.286-291
    • /
    • 2011
  • The hybrid vehicle has a good fuel economy with a electric type braking energy regeneration system. This paper introduced a novel pneumatic type braking energy regeneration system. The novel system use a scroll mechanism which have both compression function and expansion function. While vehicle is decelerating, the scroll machinery, being operated as a scroll compressor, compress a atmospheric air to save the vehicle's kinetic energy and reuse a compressed air which is reserved in a air tank while vehicle is accelerating. In order to analyze fuel improvements by applying braking energy regeneration system to a vehicle, we simulated the rate of braking energy regeneration through CVS-75 mode driving patterns.