• Title/Summary/Keyword: 제동연료 소비율

Search Result 15, Processing Time 0.024 seconds

A Study on the Lean Combustion of the Gasoline Engine with Air Assisted Fuel Injection System (공기 보조 연료 분사 장치가 있는 가솔린 기관의 희박 연소에 관한 연구)

  • Kim, S.W.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1994
  • This paper describes the effect of air assisted fuel injection system(AAI) using compressed air to improve the performance of lean combustion engine. AAI is designed to promote fuel atomization and intake flow. In order to investigate the performance of engine with AAl, experiments are conducted varying the engine revolution speed, lean air-fuel ratio and intake manifold pressure. Compared with the original engine, the performance of the engine with MI is improved as the air-fuel mixture becomes leaner or the engine load becomes lower. The descreasing rate of BSFC is propotional to the relative air-fuel ratio and the lean misfire limit extended more than 0.2 relative airfuel ratio.

  • PDF

Characteristics of canola biodiesel fuel blended with diesel on the combustion and exhaust gas emissions in a compression ignition diesel engine (압축착화 디젤기관의 연소 및 배기가스에 대한 카롤라 바이오디젤 혼합 연료의 특성)

  • Yoon, Sam Ki;Kim, Min Soo;Choi, Nag Jung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1081-1086
    • /
    • 2014
  • An experimental study was performed in order to compare with the case of using pure diesel the characteristics of combustion pressure and exhaust emissions when the engine speed was changed in a CRDI 4-cylinder diesel engine using biodiesel( Canola oil) blended and pure diesel fuel. As a results, the combustion pressure was decreased with increasing biodiesel blended rate when engine speed was 1,000, 1,500, 2000(rpm). but the combustion pressure of the engine speed 2,500rpm was increased with increasing biodiesel blended rate. The emission results show, that CO was decreased with increasing biodiesel blended rate and engine speed. The emission of $CO_2$, NOx, were increased with increasing biodiesel blended rate and engine speed.

An Effect of Operating Conditions on Exhaust Emissions in a Small Turbocharged D.I. Engine (직접 분사식 소형 과급 디젤엔진의 운전조건이 배기 배출물에 미치는 영향)

  • Jang, S.H.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.12-17
    • /
    • 2002
  • Recently, the world is faced with very serious problems related to the air pollution due to the exhaust emissions of the diesel engine. So, many of researchers have studied to reduce the exhaust emissions of diesel engine. This study was investigated for various exhaust emissions according to operating conditions in a turbocharged D.I. diesel engine. As a result of experiments in a test engine, the $CO_2\;and\;NO_x$ increased with increasing load, the $CO_2$ and CO decreased with increasing charge air pressure in manifold, the CO decreased with increasing cooling fresh water temperature, and the $NO_x$ decreased with worming cooling fresh water before engine start.

  • PDF

The Experimental Study of SOC and Measurement Results on Fuel Economy of the Hybrid Electric Vehicle (하이브리드자동차의 연료소비율 시험 시 초기 SOC와 측정결과에 대한 실험적 연구)

  • Kim, Kwang-Il;Kwon, Hae-Boung;Lee, Hyun-Woo;Lim, Jong-Soon;Shin, Young-Bok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.534-537
    • /
    • 2008
  • 하이브리드자동차의 연료소비율 시험 시 초기 SOC 조건에 따른 SOC와 연비 변화 특성을 파악하기 위해 2종의 차종을 선택하여 UDDS 모드주행 실험을 실시하였다. 실험결과 Strong type 자동차는 주행시작 약 550초 경과 후 SOC 52 $\sim$ 54%로 수렴하였다. 또한 일반 시가지 주행조건에서는 SOC를 50$\sim$55 % 범위에서 제어함을 알 수 있으며, 초기 SOC 조건에 따라 연비는 약 79%의 편차가 나타났다. 이는 저속구간에서 순수 전기자동차 구동이 구현됨으로써 SOC 70%에서 큰 연비 상승 효과가 나타나는 것으로 판단 된다. Mild type 자동차는 연비가 초기 SOC 조건에 따라 약 5%의 편차가 나타남을 알 수 있었으며, SOC 변화특성은 배터리 충전상태에 따라 충전량 제어는 이루어지나 가속 시 어시스트만 이루어지는 시스템적 특성상 효율적인 SOC 제어가 이루어지지 않아 연비에는 큰 영향을 주지 않는 것으로 생각된다.

  • PDF

Investigation of the Combustion and Emission Characteristics of 1-Octanol/Diesel Fuel Blends in a Direct Injection Diesel Engine (직분사 디젤 엔진에서 1-옥탄올/경유 혼합 연료의 연소 및 배기 특성 연구)

  • CHEOL-OH PARK;JEONGHYEON YANG;BEOMSOO KIM;JAESUNG KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.69-76
    • /
    • 2023
  • An experimental study was conducted on a 4-stroke direct injection diesel engine to examine the combustion and emission characteristics of 1-octanol/diesel fuel blends. The concentration of 1-octanol in the fuel blends was 10%, 30%, and 50% by volume. Experiments were conducted by varying the engine torque from 6 Nm to 12 Nm at the same engine speed of 2,700 rpm. Results showed that the fuel conversion efficiency increased as the 1-octanol proportion increased under most experimental conditions. However, the brake specific fuel consumption increased due to the relatively low lower heating value of 1-octanol. The smoke opacity and the concentrations of NOx and CO emissions generally decreased with brake mean effective pressure as the 1-octanol proportion increased. On the other hand, the unburned hydrocarbon concentration increased with an ascending ratio of 1-octanol.

Expansion of Operating Range and Reduction of BSFC in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 연료소비율 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3013-3018
    • /
    • 2008
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range, brake specific fuel consumption (BSFC) and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range. The result showed that operating range with boost was expanded up to 41.9% compared to naturally aspirated LTC condition due to increased mixing intensity. The boosted LTC engine showed low BSFC value and dramatically reduced soot emission under all operating range compared with high speed direct injection (HSDI) mode. Finally, this paper presents the boosted LTC map of emission and the strategy of improved engine operating range.

  • PDF

Experimental Study on Combustion Characteristics of Biodiesel Waste Cooking Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐식용유의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • Environmental pollution and alternative energy has attracted increasing interest. The use of diesel engines is expected to increase in the world owing to their fuel economy. The problem of air pollution emissions from marine engines is causing a major concern in many areas. An alternative fuel was introduced as an environmentally friendly fuel to reduce the toxic emissions from conventional fossil fuels. Biodiesel fuel, which is a renewable energy is highlighted as environmentally friendly energy. This energy can be operated in regular diesel engines when it is blended with invariable ratios without making changes. In this study, a bio-diesel fuel was produced from waste cooking oil and applied to a marine diesel engine to examine the effects on the characteristics of combustion. Waste cooking oil contains a high cetane number and viscosity component, a low carbon and oxygen content. As a result, the brake specific fuel consumption was increased, and the cylinder pressure, rate pressure rise and rate of heat release were decreased.

Effects of the Ultrasonic Energy on the IDI Diesel Engine Performance (초음파에너지가 간접분사식 디젤기관 성능에 미치는 영향)

  • Lee, Byoung-Oh;Kim, Yong-Guk;Lee, Seung-Jin
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.169-174
    • /
    • 2009
  • In the study, the effect of the ultrasonic energy in transportational diesel fuel on the engine performance and exhaust emission has been investigated for indirect injection diesel engine. It was tested to estimated change of engine performance and exhaust emission characteristics for the transportational diesel fuels and the reforming fuels which was irradiated by the ultrasonic energy. The results of the study may be concluded as follows; By the irradiation of ultrasonic energy on the diesel fuel, cylinder pressure, heat release rate and engine power were increased but bsfc, mass fraction burned, and smoke were reduced. Also, the combustion was more stabilized and became complete and NOx was increased.

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends (압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구)

  • JAESUNG KWON;BEOMSOO KIM;JEONGHYEON YANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

The Characteristics of Performance and Exhaust Emission on Simultaneous Application with Biodiesel Fuel and Oxygen Component in a C.I. Engine (압축착화기관에서 바이오디젤유 및 함산소성분 동시적용시 성능과 배기배출물 특성)

  • Choi, S.H.;Oh, Y.T.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions from the diesel engines are recognized as main cause which has a great influence on environment. In this study, the potential of biodiesel fuel and oxygenated fuel(ethylene glycol mono-n-butyl ether; EGBE) was investigated as an effective method of decreasing the smoke emission. The smoke emission of blending fuel(EGBE 0~20 vol-%) was reduced in comparison with diesel fuel and it was reduced approximately 64% at 2000 rpm, full load in the 20% of blending rate. On the contrary NOx emissions from biodiesel fuel and EGBE blended fuel were increased compared with diesel fuel. Torque and brake specific energy consumption(BSEC) didn't have large differences.