• Title/Summary/Keyword: 제곱근 오차 평균

Search Result 357, Processing Time 0.026 seconds

A simulation study for various propensity score weighting methods in clinical problematic situations (임상에서 발생할 수 있는 문제 상황에서의 성향 점수 가중치 방법에 대한 비교 모의실험 연구)

  • Siseong Jeong;Eun Jeong Min
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.381-397
    • /
    • 2023
  • The most representative design used in clinical trials is randomization, which is used to accurately estimate the treatment effect. However, comparison between the treatment group and the control group in an observational study without randomization is biased due to various unadjusted differences, such as characteristics between patients. Propensity score weighting is a widely used method to address these problems and to minimize bias by adjusting those confounding and assess treatment effects. Inverse probability weighting, the most popular method, assigns weights that are proportional to the inverse of the conditional probability of receiving a specific treatment assignment, given observed covariates. However, this method is often suffered by extreme propensity scores, resulting in biased estimates and excessive variance. Several alternative methods including trimming, overlap weights, and matching weights have been proposed to mitigate these issues. In this paper, we conduct a simulation study to compare performance of various propensity score weighting methods under diverse situation, such as limited overlap, misspecified propensity score, and treatment contrary to prediction. From the simulation results overlap weights and matching weights consistently outperform inverse probability weighting and trimming in terms of bias, root mean squared error and coverage probability.

Automatic Extraction of Tree Information in Forest Areas Using Local Maxima Based on Aerial LiDAR (항공 LiDAR 기반 Local Maxima를 이용한 산림지역 수목정보 추출 자동화)

  • In-Ha Choi;Sang-Kwan Nam;Seung-Yub Kim;Dong-Gook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1155-1164
    • /
    • 2023
  • Currently, the National Forest Inventory (NFI) collects tree information by human, so the range and time of the survey are limited. Research is actively being conducted to extract tree information from a large area using aerial Light Detection And Ranging (LiDAR) and aerial photographs, but it does not reflect the characteristics of forest areas in Korea because it is conducted in areas with wide tree spacing or evenly spaced trees. Therefore, this study proposed a methodology for generating Digital Surface Model (DSM), Digital Elevation Model (DEM), and Canopy Height Model (CHM) images using aerial LiDAR, extracting the tree height through the local Maxima, and calculating the Diameter at Breath Height (DBH) through the DBH-tree height formula. The detection accuracy of trees extracted through the proposed methodology was 88.46%, 86.14%, and 84.31%, respectively, and the Root Mean Squared Error (RMSE) of DBH calculated based on the tree height formula was around 5cm, confirming the possibility of using the proposed methodology. It is believed that if standardized research on various types of forests is conducted in the future, the scope of automation application of the manual national forest resource survey can be expanded.

Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms (다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화)

  • Kichan Sim;Kangsu Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Structural health monitoring for ships and offshore structures is important in various aspects. Ships and offshore structures are continuously exposed to various environmental conditions, such as waves, wind, and currents. In the event of an accident, immense economic losses, environmental pollution, and safety problems can occur, so it is necessary to detect structural damage or defects early. In this study, structural response data of multi-linked floating offshore structures under various wave load conditions was calculated by performing fluid-structure coupled analysis. Furthermore, the order reduction method with distortion base mode was applied to the structures for predicting the structural response by using the results of numerical analysis. The distortion base mode order reduction method can predict the structural response of a desired area with high accuracy, but prediction performance is affected by sensor arrangement. Optimization based on a genetic algorithm was performed to search for optimal sensor arrangement and improve the prediction performance of the distortion base mode-based reduced-order model. Consequently, a sensor arrangement that predicted the structural response with an error of about 84.0% less than the initial sensor arrangement was derived based on the root mean squared error, which is a prediction performance evaluation index. The computational cost was reduced by about 8 times compared to evaluating the prediction performance of reduced-order models for a total of 43,758 sensor arrangement combinations. and the expected performance was overturned to approximately 84.0% based on sensor placement, including the largest square root error.

Development of Unfolding Energy Spectrum with Clinical Linear Accelerator based on Transmission Data (물질투과율 측정정보 기반 의료용 선형가속기의 에너지스펙트럼 유도기술 개발)

  • Choi, Hyun Joon;Park, Hyo Jun;Yoo, Do Hyeon;Kim, Byoung-Chul;Yi, Chul-Young;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Background: For the accurate dose assessment in radiation therapy, energy spectrum of the photon beam generated from the linac head is essential. The aim of this study is to develop the technique to accurately unfolding the energy spectrum with the transmission analysis method. Materials and Methods: Clinical linear accelerator and Monet Carlo method was employed to evaluate the transmission signals according to the thickness of the observer material, and then the response function of the ion chamber response was determined with the mono energy beam. Finally the energy spectrum was unfolded with HEPROW program. Elekta Synergy Flatform and Geant4 tool kits was used in this study. Results and Discussion: In the comparison between calculated and measured transmission signals using aluminum alloy as an attenuator, root mean squared error was 0.43%. In the comparison between unfolded spectrum using HEPROW program and calculated spectrum using Geant4, the difference of peak and mean energy were 0.066 and 0.03 MeV, respectively. However, for the accurate prediction of the energy spectrum, additional experiment with various type of material and improvement of the unfolding program is required. Conclusion: In this research, it is demonstrated that unfolding spectra technique could be used in megavoltage photon beam with aluminum alloy and HEPROW program.

Development of Optimum Traffic Safety Evaluation Model Using the Back-Propagation Algorithm (역전파 알고리즘을 이용한 최적의 교통안전 평가 모형개발)

  • Kim, Joong-Hyo;Kwon, Sung-Dae;Hong, Jeong-Pyo;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.679-690
    • /
    • 2015
  • The need to remove the cause of traffic accidents by improving the engineering system for a vehicle and the road in order to minimize the accident hazard. This is likely to cause traffic accident continue to take a large and significant social cost and time to improve the reliability and efficiency of this generally poor road, thereby generating a lot of damage to the national traffic accident caused by improper environmental factors. In order to minimize damage from traffic accidents, the cause of accidents must be eliminated through technological improvements of vehicles and road systems. Generally, it is highly probable that traffic accident occurs more often on roads that lack safety measures, and can only be improved with tremendous time and costs. In particular, traffic accidents at intersections are on the rise due to inappropriate environmental factors, and are causing great losses for the nation as a whole. This study aims to present safety countermeasures against the cause of accidents by developing an intersection Traffic safety evaluation model. It will also diagnose vulnerable traffic points through BPA (Back -propagation algorithm) among artificial neural networks recently investigated in the area of artificial intelligence. Furthermore, it aims to pursue a more efficient traffic safety improvement project in terms of operating signalized intersections and establishing traffic safety policies. As a result of conducting this study, the mean square error approximate between the predicted values and actual measured values of traffic accidents derived from the BPA is estimated to be 3.89. It appeared that the BPA appeared to have excellent traffic safety evaluating abilities compared to the multiple regression model. In other words, The BPA can be effectively utilized in diagnosing and practical establishing transportation policy in the safety of actual signalized intersections.

Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse (고압나트륨등 보광 온실의 열적 거동 및 엽온 분석)

  • Seungri Yoon;Jin Hyun Kim;Minju Shin;Dongpil Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.

Comparison of Image Quality among Different Computed Tomography Algorithms for Metal Artifact Reduction (금속 인공물 감소를 위한 CT 알고리즘 적용에 따른 영상 화질 비교)

  • Gui-Chul Lee;Young-Joon Park;Joo-Wan Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.541-549
    • /
    • 2023
  • The aim of this study wasto conduct a quantitative analysis of CT image quality according to an algorithm designed to reduce metal artifacts induced by metal components. Ten baseline images were obtained with the standard filtered back-projection algorithm using spectral detector-based CT and CT ACR 464 phantom, and ten images were also obtained on the identical phantom with the standard filtered back-projection algorithm after inducing metal artifacts. After applying the to raw data from images with metal artifacts, ten additional images for each were obtained by applying the virtual monoenergetic algorithm. Regions of interest were set for polyethylene, bone, acrylic, air, and water located in the CT ACR 464 phantom module 1 to conduct compare the Hounsfield units for each algorithm. The algorithms were individually analyzed using root mean square error, mean absolute error, signal-to-noise ratio, peak signal-to-noise ratio, and structural similarity index to assess the overall image quality. When the Hounsfield units of each algorithm were compared, a significant difference was found between the images with different algorithms (p < .05), and large changes were observed in images using the virtual monoenergetic algorithm in all regions of interest except acrylic. Image quality analysis indices revealed that images with the metal artifact reduction algorithm had the highest resolution, but the structural similarity index was highest for images with the metal artifact reduction algorithm followed by an additional virtual monoenergetic algorithm. In terms of CT images, the metal artifact reduction algorithm was shown to be more effective than the monoenergetic algorithm at reducing metal artifacts, but to obtain quality CT images, it will be important to ascertain the advantages and differences in image qualities of the algorithms, and to apply them effectively.

An Analysis on Characteristics of Turbulence Energy Dissipation Rate from Comparison of Wind Profiler and Rawinsonde (연직바람관측장비와 레윈존데의 비교를 통한 난류 에너지 감소률의 특성 분석)

  • Kang, Woo Kyeong;Moon, Yun Seob;Jung, Ok Jin
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.448-464
    • /
    • 2016
  • The purpose of this study is to optimize the parameters related to consensus coherency within the PCL 1300, the operating program of wind profiler, from a validation of wind data between rawinsonde and wind profiler at Chupungryeong ($36^{\circ}13^{\prime}$, $127^{\circ}59^{\prime}$) site in Korea. It is then to analyze the diurnal and seasonal characteristics of the turbulence energy dissipation rate (${\varepsilon}$) in clear and rainy days from March 2009 to February 2010. In comparison of the wind data between wind profiler and rawinsonde during April 22-23, 2010, it was shown in a big error more than $10ms^{-1}$ over the height of 3,000 meters in the zonal (u) and meridional (v) wind components. When removing more than $10ms^{-1}$ in each wind speed difference of u an v components between the two instruments, the correlation coefficients of these wind components were 0.92 and 0.88, respectively, and the root mean square errors were 3.07 and $1.06ms^{-1}$. Based on these results, when the data processing time and the minimum available data within the PCL 1300 program were adjusted as 30 minutes and 60%, respectively, the bias errors were small. In addition, as a result of an analysis of sensitivity to consensus coherency of u and v components within the PCL1300 program, u components were underestimated in radial coherency, instantaneous and winbarbs coherency, whereas v components were overestimated. Finally by optimizing parameters of the PCL1300 program, the diurnal and seasonal means of ${\varepsilon}$ at each height were higher in rainy days than those in clear days because of increasing in the vertical wind speed due to upward and downward motions. The mean ${\varepsilon}$ for clear and rainy days in winter was lower than those of other seasons, due to stronger horizontal wind speed in winter than those in other seasons. Consequently, when the turbulence energy dissipation rates in the vertical wind speed of more than ${\pm}10cm\;s^{-1}$ were excluded for clear and rainy days, the mean ${\varepsilon}$ in rainy days was 6-7 times higher than that in clear days, but when considering them, it was 4-5 times higher.

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere (북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석)

  • Kang, Hee-Jung;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.139-157
    • /
    • 2015
  • We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.