잡음 추정과 검출 알고리즘에서는 LMS Filter를 이용하여 변화하는 잡음 환경에 빠르게 적응할 수 있도록 한다. 하지만 LMS Filter는 잡음 추정을 위한 일정 시간 동안 적응 시간이 필요하며 신호의 변화가 일어날 경우 더 많은 적응 시간이 소요되는 단점을 가지고 있다. 따라서 이를 보완하기 위하여 프레임 단위의 AELMS Filter를 이용한 잡음 제거 방법을 제안한다. 본 논문은 잡음 환경에서 입력되는 신호를 프레임 단위로 분할하고 평균과 분산을 이용한 예측 LMS Filter를 구성하여 잡음을 제거하므로 잡음 환경이 변화하더라도 빠른 적응 시간으로 잡음을 제거한다. 또한 환경 잡음과 음성 신호가 혼합되어 입력될 때 잡음을 제거하여 음성의 고유 특성을 유지하고 음성 정보 손상을 줄이기 위한 방법이다. 프레임 단위의 AELMS Filter를 이용한 잡음 제거 방법으로 잡음 제거 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 감쇠도가 평균 6.8dB 향상되었다.
본 논문은 적응 반향 제거기인 parametric wiener filter (PWF)의 반향신호 제거 파라미터를 구간 조건에 따라 차등적으로 적용시키는 새로운 음향학적 반향제거 (Acoustic Echo Suppression, AES) 알고리즘을 제안한다. PWF는 반향 신호 추정의 부정확성을 보상하고자 반향신호 제거 파라미터를 사용한다. 기존의 방법은 단일통화 구간과 동시통화 구간에 관계없이 동일한 반향신호 제거파라미터 값을 적용하여 동시통화 환경에서 근단 신호의 왜곡을 발생 시킨다. 본 논문에서는 상관계수 (Correlation Coefficient)를 이용한 동시통화(Double-Talk) 검출 알고리즘과 음성구간검출기 (Voice Activity Detector, VAD)의 결과로부터, 원단 화자만 있는 구간과 동시통화 구간을 구분하고 각각의 경우에 반향제거 파라미터를 달리 적용하여 동일한 반향신호 제거 파라미터를 사용함에 따른 동시통화 구간내의 근단 화자신호의 음질 저하 없이 반향신호를 보다 효과적으로 제거하는 방법을 제안한다. 제안된 방법의 결과는 객관적인 실험을 통해 비교 평가한 결과 우수한 성능을 보였다.
영상은 잡음센서이나 채널 전송에러에 의해 생기는 임펄스 잡음에 의해 자주 오염된다. 본 논문은 영상에서 이런 임펄스 잡음을 제거하는 방법에 대해 논의하고자 한다. 제안된 잡음제거는 SVM(Support Vector Machine)과 개선된 Adaptive Median 필터에 의해 이루어진다. SVM에 의해 영상에서 잡음픽셀여부를 검출하고 검출된 잡음픽셀은 개선된 Adaptive Median 필터에 의해 새로운 픽셀값으로 대체한다. 제안된 방법의 성능을 평가하기 위해 영상 실험을 통하여 salt-and-pepper 임펄스 잡음과 random-valued 임펄스 잡음을 고려하여 기존의 잡음제거 방법들과 정성적이고 MAE, PSNR를 통한 정량적인 비교를 하였다. 실험결과 제안된 방법은 잡음 제거와 미세한 부분에 대한 보존력이 뛰어나고 특히, 많이 오염된 영상에 대해서도 상당한 잡음제거 성능을 보였다.
영상 시퀀스로부터 움직이는 객체의 검출은 비디오 감시, 교통 모니터링 및 분석, 사람 검출 및 추적 등에서 가장 기본적이며 중요한 분야이다. 안개와 같은 환경적 요인에 의하여 화질이 저하된 영상 속에서 움직이는 객체를 검출하는 일은 매우 어렵다. 특히, 안개는 주변 물체의 색상을 모두 비슷하게 만들고 채도를 떨어뜨려 배경으로부터 객체를 구별하기 힘들게 만든다. 이런 이유로 안개 영상 속에서 객체 검출 성능은 매우 낮으며 신뢰할 수 없는 결과를 나타내고 있다. 본 논문은 안개와 같은 환경적 요인을 제거하고 객체의 검출 성능을 높이기 위한 방법으로 안개 지수를 기반으로 안개 유무를 판단하고, Dark Channel Prior을 이용하여 안개 영상의 전달량을 추정하고 안개가 제거된 영상으로 복원하였으며 가우시안 혼합 모델을 이용한 배경 차분 방법을 이용하여 객체를 검출하였다. 그리고 제안된 방법의 성능을 비교하기 위해 안개 제거 전과 후의 영상에 대한 Recall 과 Precision을 측정하여 안개 제거에 따른 성능 향상 정도를 수치화하여 비교하였다. 결과적으로 안개 제거 후 영상의 가시성이 매우 향상되었으며 객체 검출 성능이 매우 향상됨을 알 수 있었다.
본 논문의 주요 목적은 컬러 이미지에서의 노이즈 제거를 위한 다양한 필터들의 성능 분석 비교이다. 기존의 노이즈 제거 필터들에 대한 분석에서 한 발 더 나아가 RGB에서 HSV나 $YC_BC_R$로 컬러 모델변환을 하여 노이즈를 제거하는 방법을 제안하였다. 논문에서 사용된 예인 Median, Wiener, Mean 등의 노이즈 제거필터들의 성능 개선에 도움을 주기위해 고안했으며 현재까지는 컬러 이미지를 위한 필터들의 성능분석이나 컬러모델 변환을 이용한 개선 방법들이 제안된 바가 없다. 이에 영감을 받아서, 고안된 새로운 방법을 테스트 하였다. 실행해 본 결과, 현재 사용되고 있는 필터들 중에서 몇몇 필터들의 성능을 향상시켜서 컬러 이미지에서의 노이즈 제거에 큰 도움을 주는 것으로 나타났다.
본 논문은 두 장의 스테레요 영상으로부터 자동적으로 특징점 정합을 수행하도록 하는 새로운 절차의 효율적인 정합방법을 제안한다. 이를 위해 초기정합의 결과로 얻을 수 있는 유일 정합쌍을 이용한다. 즉, 본 논문에서는 초기정합의 결과로 얻어낸 유일 정합쌍의 정보를 이용하여 바로 outlier들을 제거시키므로써 초기정합의 결과가 갖는 애매성까지도 동반하여 상당량을 줄이도록 한다. 결국 애매성 제거에 대한 부담이 줄어들게 되므로 애매성 제거과정에서는 이완화 방법을 사용하지 않고 빠르게 애매성을 제거시킨다. 아울러 정합의 정확도를 높이기 위해 초기정합 후 바로 서브픽셀 정확도의 정합을 수행하며 정합의 마지막 단계에서는 추가정합을 수행하므로써 정합의 성능을 향상시킨다. 실내, 실회 스테레요 영상에 대한 다양한 실험결과는 본 논문에서 제안하는 방법의 특징점 정합기법이 빠르고 효율적임을 보여준다.
항해 및 군용 장비로써 많이 이용되는 능동형 소나 시스템의 문제점 가운데 하나는 잔향 문제이다. 잔향은 하이드로폰으로부터 송신된 신호가 수면, 해저, 공간으로부터 반사되어 수신단에 입사된 신호를 말한다. 이러한 잔향은 원하는 신호를 수신하는데 장애가 되며 성능 향상을 위해 이들은 제거되어져야 한다. 본 연구에서는 잔향을 제거하기 위한 방법에 대하여 연구하였다. 제안된 방법은 고유 부공간중 신호 부공간과 잡음 부공간이 서로 직교하는 성질을 이용하며, 잡음 부공간을 찾음으로써 잔향을 제거한다. 제안된 방법의 성능을 입증하기 위해 시뮬레이션을 수행하였다.
세라믹 소재 영상에서 결함 영역이 다른 영역보다 명암도가 밝게 나타나는 정보를 이용하여 ROI 영역을 추출한다. 추출된 ROI 영역에서 Blurring 기법을 적용하여 미세 잡음을 제거한다. 미세 잡음이 제거된 ROI 영역에서 Median Filter기법을 적용하여 임펄스 잡음을 제거한다. 임펄스 잡음이 제거된 영역에서 Prewit Mask을 적용하여 수평과 수직 에지를 검출하고 검출된 에지에 윤곽선 추적 기법을 적용하여 결함 영역의 경계를 보정한다. 보정된 영상에서 Blob Labeling 기법을 적용하여 최종적으로 결함 영역을 추출한다. 제안된 방법을 8mm와 10mm 세라믹 소재 영상을 대상으로 실험한 결과, 기존의 결함 검출 방법보다 제안된 검출 방법의 검출 성능이 개선된 것을 확인하였다.
본 논문에서는 다양한 전화선 채널을 통하여 수집된 음성 데이터에 포함된 잡음 및 채널 왜곡을 제거하여 음성인식 시스템의 성능을 향상시키는 방법에 관하여 연구하였다. 전 화선을 통과한 음성에 포함된 채널 잡음 및 왜곡을 제거하는 방법으로는 음성신호를 보상하 는 방법으로 CMS(Cepstral Mean Subtraction), SBR(Signal Bias Removal)과 SM(Stochastic Matching)의 성능을 비교 평가하였다. 잡음제거 방식의 성능을 평가를 위하 여 음소 단위의 반연속 HMM을 이용한 화자독립 단독음 인식을 수행하였다. 인식 실험 결 과, 멜 켑스트럼을 사용한 경우에 CMS가 가장 우수한 성능을 내었고 다음으로 SM과 SBR 순으로 나타났다. 또한 특징벡터를 주변 잡음에 강인하게 하는 가중함수(RPS, BPL)를 사용 한 켑스트럼 계수와 잡음제거 방식을 함께 사용한 경우에 인식 성능이 더욱 향상되었다.
본 논문에서는 CPLD 구조를 고려한 게이트 레벨 글리치 제거 방법에 대해 제안하였다. CPLD는 AND-OR 게이트의 2단 구조를 가진 LE를 기본 구조로 구성되어 있는 소자이다. CPLD로 구현할 회로에 대한 DAG를 CPLD 구조에 맞도록 그래프를 분할하여 매핑가능클러스터를 생성한다. 생성된 매핑가능클러스터는 내부의 글리치와 전체 회로에 대한 글리치 발생 가능성을 검사하여 글리치를 제거한다. AND게이트와 OR게이트를 사용하는 2단 구조는 게이트가 달라 글리치가 발생될 수 있는 가능성을 검사하기 어렵다는 단점이 있어 AND-OR 게이트의 2단 구조와 동일한 구조를 가지고 있으며 게이트가 동일한 NAND 게이트를 이용하여 전체 회로를 변환한 후 글리치 발생여부를 검사함으로서 정확한 글리치 발생 가능성을 제거한다. 실험 결과는 제안 된 알고리즘 [10]과 비교하였다. 소비 전력이 2 % 감소되어 본논문에서 제안한 방법의 효율성이 입증되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.