• Title/Summary/Keyword: 정합기준

Search Result 352, Processing Time 0.026 seconds

Efficient Methods for Detecting Frame Characteristics and Objects in Video Sequences (내용기반 비디오 검색을 위한 움직임 벡터 특징 추출 알고리즘)

  • Lee, Hyun-Chang;Lee, Jae-Hyun;Jang, Ok-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • This paper detected the characteristics of motion vector to support efficient content -based video search of video. Traditionally, the present frame of a video was divided into blocks of equal size and BMA (block matching algorithm) was used, which predicts the motion of each block in the reference frame on the time axis. However, BMA has several restrictions and vectors obtained by BMA are sometimes different from actual motions. To solve this problem, the foil search method was applied but this method is disadvantageous in that it has to make a large volume of calculation. Thus, as an alternative, the present study extracted the Spatio-Temporal characteristics of Motion Vector Spatio-Temporal Correlations (MVSTC). As a result, we could predict motion vectors more accurately using the motion vectors of neighboring blocks. However, because there are multiple reference block vectors, such additional information should be sent to the receiving end. Thus, we need to consider how to predict the motion characteristics of each block and how to define the appropriate scope of search. Based on the proposed algorithm, we examined motion prediction techniques for motion compensation and presented results of applying the techniques.

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.

Evaluation of Geometric Correspondence of kV X-ray Images, Electric Portal Images and Digitally Reconstructed Radiographic Images (kV X선 영상, 전자조사문 영상, 디지털화재구성 영상 간 기하학적 일치성 평가)

  • Cheong, Kwang-Ho;Kim, Kyoung-Joo;Cho, Byung-Chul;Kang, Sei-Kwon;Juh, Ra-Hyeong;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.118-125
    • /
    • 2007
  • In this study we estimated a geometric correlation among digitally reconstructed radiographic image (DRRI), kV x-ray image (kVXI) from the On-Board Imager (OBI) and electric portal image (EPI). To verify geometric correspondence of DRRI, kVXI and EPI, specially designed phantom with indexed 6 ball bearings (BBs) were employed. After accurate setup of the phantom on a treatment couch using orthogonal EPIs, we acquired set of orthogonal kVXIs and EPIs then compared the absolute positions of the center of the BBs calculated at each phantom plane for kVXI and EPI respectively. We also checked matching result for obliquely incident beam (gantry angle of $315^{\circ}$) after 2D-2D matching provided by OBI application. A reference EPI obtained after initial setup of the phantom was compared with 10 series of EPIs acquired after each 2D-2D matching. Imaginary setup errors were generated from -5 mm to 5 mm at each couch motion direction. Calculated positions of all center positions of the BBs at three different images were agreed with the actual points within a millimeter and each other. Calculated center positions of the BBs from the reference and obtained EPIs after 2D-2D matching agreed within a millimeter. We could tentatively conclude that the OBI system was mechanically quite reliable for image guided radiation therapy (IGRT) purpose.

  • PDF

Broadband U-Shaped RFID Tag Antenna with Near-Isotropic Characteristic (광대역에서 일정한 준 등방성 특성을 가지는 U-형태의 RFID 태그 안테나)

  • Lee, Sang-Woon;Jung, Hak-Joo;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.480-492
    • /
    • 2009
  • In this paper, we proposed a broadband U-shaped RFID tag antenna with near-isotropic characteristic at UHF band. The proposed tag antenna is composed of the U-shaped half wavelength dipole and a rectangular shaped feed. The rectangular shaped feed that is located inside U-shaped dipole is connected for conjugate impedance matching with the commercial tag chip. A better constant gain deviation characteristic in the operating frequency band is achieved by inserting a rectangular slit in the lower center of the U-shaped antenna body. On the condition of VSWR<2, the tag antenna had the measured bandwidth of 10.36%, from 860.5 to 954.5 MHz, and 9.84%, from 864.5 to 954 MHz, for antenna without slit and with slit, respectively. On the condition of VSWR<5.8, the tag antennas had the measured bandwidth of 15.78%, from 835.5 to 979.5 MHz, and 15.89%, from 837 to 981.5 MHz, for antenna without slit and with slit, respectively. The difference between the maximum and minimum gain deviations of tag antenna without slit in the operating frequency band is 0.53 dB since the maximum and minimum gain deviations are 3.86 dB and 3.33 dB, respectively. Whereas the difference between the maximum and minimum gain deviations of tag antenna with slit in the operating frequency is 0.06 dB since the maximum and minimum gain deviations are 3.60 dB and 3.54 dB, respectively.

Efficient Homography Estimation for Panoramic Image Generation (효율적인 호모그래피 추정을 통한 파노라마 영상 생성)

  • Seo, Sangwon;Joeng, Soowoong;Han, Yunsang;Choi, Jongsoo;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.215-224
    • /
    • 2013
  • An efficient homography estimation method for large sized images is proposed. Estimating an accurate homography is one of the most important parts in image stitching processes. Since hardwares have been advanced, it has been passible to take higher resolution images. However, computational cost for estimating homography has been also increased. Specifically, when too many features exist in the images, it requires lots of computations to estimate a correct homography. Furthermore, there is a high probability of obtaining an incorrect homography. Therefore, we propose a numerical method to extract the appropriate correspondences from several down-scaled images to estimate and compensate the homography numerically for restoring an original homography. Also, if there is an unbalance in color tone between the reference and the target images, we make them balanced by using local information of the overlapped regions. Experimental results show that proposed method is three times faster in 3.2 mega pixel images, five times faster in 8mega pixel images than the conventional approach. Therefore, we believe that the proposed method can be a useful tool to efficiently estimate a homography.

The design of Fully Differential CMOS Operational Amplifier (Fully Differential CMOS 연산 증폭기 설계)

  • Ahn, In-Soo;Song, Seok-Ho;Choi, Tae-Sup;Yim, Tae-Soo;Sakong, Sug-Chin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.85-96
    • /
    • 2000
  • It is necessary that fully differential operational amplifier circuit should drive an external load in the VLSI design such as SCF(Switched Capacitor Filter), D/A Converter, A/D Converter, Telecommunication Circuit and etc. The conventional CMOS operational amplifier circuit has many problems according to CMOS technique. Firstly, Capacity of large loads are not able to operate well. The problem can be solve to use class AB stages. But large loads are operate a difficult, because an element of existing CMOS has a quadratic functional relation with input and output voltage versus output current. Secondly, Whole circuit of dynamic range decrease, because a range of input and output voltages go down according as increasing of intergration rate drop supply voltage. The problem can be improved by employing fully differential operational amplifier using differential output stage with wide output swing. In this paper, we proposed new current mirror has large output impedance and good current matching with input an output current and compared with characteristics for operational amplifier using cascoded current mirror. To obtain large output swing and low power consumption we suggest a fully differential operational amplifier. The circuit employs an output stage composed new current mirror and two amplifier stage. The proposed circuit is layout and circuit of capability is inspected through simulation program(SPICE3f).

  • PDF

Adaptive Thresholding Method Using Zone Searching Based on Representative Points for Improving the Performance of LCD Defect Detection (LCD 결함 검출 성능 개선을 위한 대표점 기반의 영역 탐색을 이용한 적응적 이진화 기법)

  • Kim, Jin-Uk;Ko, Yun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.689-699
    • /
    • 2016
  • As the demand for LCD increases, the importance of inspection equipment for improving the efficiency of LCD production is continuously emphasized. The pattern inspection apparatus is one that detects minute defects of pattern quickly using optical equipment such as line scan camera. This pattern inspection apparatus makes a decision on whether a pixel is a defect or not using a single threshold value in order to meet constraint of real time inspection. However, a method that uses an adaptive thresholding scheme with different threshold values according to characteristics of each region in a pattern can greatly improve the performance of defect detection. To apply this adaptive thresholding scheme it has to be known that a certain pixel to be inspected belongs to which region. Therefore, this paper proposes a region matching algorithm that recognizes the region of each pixel to be inspected. The proposed algorithm is based on the pattern matching scheme with the consideration of real time constraint of machine vision and implemented through GPGPU in order to be applied to a practical system. Simulation results show that the proposed method not only satisfies the requirement for processing time of practical system but also improves the performance of defect detection.

3D Model Construction and Evaluation Using Drone in Terms of Time Efficiency (시간효율 관점에서 드론을 이용한 3차원 모형 구축과 평가)

  • Son, Seung-Woo;Kim, Dong-Woo;Yoon, Jeong-Ho;Jeon, Hyung-Jin;Kang, Young-Eun;Yu, Jae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.497-505
    • /
    • 2018
  • In a situation where the amount of bulky waste needs to be quantified, a three-dimensional model of the wastes can be constructed using drones. This study constructed a drone-based 3D model with a range of flight parameters and a GCPs survey, analyzed the relationship between the accuracy and time required, and derived a suitable drone application technique to estimate the amount of waste in a short time. Images of waste were photographed using the drone and auto-matching was performed to produce a model using 3D coordinates. The accuracy of the 3D model was evaluated by RMSE calculations. An analysis of the time required and the characteristics of the top 15 models with high accuracy showed that the time required for Model 1, which had the highest accuracy with an RMSE of 0.08, was 954.87 min. The RMSE of the 10th 3D model, which required the shortest time (98.27 min), was 0.15, which is not significantly different from that of the model with the highest accuracy. The most efficient flight parameters were a high overlapping ratio at a flight altitude of 150 m (60-70% overlap and 30-40% sidelap) and the minimum number of GCPs required for image matching was 10.

Evaluation of Target Position's Accuracy in 2D-3D Matching using Rando Phantom (인체팬톰을 이용한 2D-3D 정합시 타켓위치의 정확성 평가)

  • Jang, Eun-Sung;Kang, Soo-Man;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Purpose: The aim of this study is to compare patient's body posture and its position at the time of simulation with one at the treatment room using On-board Imaging (OBI) and CT (CBCT). The detected offsets are compared with position errors of Rando Phantom that are practically applied. After that, Rando Phantom's position is selected by moving couch based on detected deviations. In addition, the errors between real measured values of Rando Phantom position and theoretical ones is compared. And we will evaluate target position's accuracy of KV X-ray imaging's 2D and CBCT's 3D one. Materials and Methods: Using the Rando Phantom (Alderson Research Laboratories Inc. Stanford. CT, USA) which simulated human body's internal structure, we will set up Rando Phantom on the treatment couch after implementing simulation and RTP according to the same ways as the real radioactive treatment. We tested Rando Phantom that are assumed to have accurate position with different 3 methods. We measured setup errors on the axis of X, Y and Z, and got mean standard deviation errors by repeating tests 10 times on each tests. Results: The difference between mean detection error and standard deviation are as follows; lateral 0.4+/-0.3 mm, longitudinal 0.6+/-0.5 mm, vertical 0.4+/-0.2 mm which all within 0~10 mm. The couch shift variable after positioning that are comparable to residual errors are 0.3+/-0.1, 0.5+/-0.1, and 0.3+/-0.1 mm. The mean detection errors by longitudinal shift between 20~40 mm are 0.4+/-0.3 in lateral, 0.6+/-0.5 in longitudinal, 0.5+/-0.3 in vertical direction. The detection errors are all within range of 0.3~0.5 mm. Residual errors are within 0.2~0.5 mm. Each values are mean values based on 3 tests. Conclusion: Phantom is based on treatment couch shift and error within the average 5mm can be gained by the diminution detected by image registration based on OBI and CBCT. Therefore, the selection of target position which depends on OBI and CBCT could be considered as useful.

  • PDF

Improving the Ownership Regulation in the Broadcasting Industry (방송사업의 소유겸영규제 개선)

  • LEE, Suil
    • KDI Journal of Economic Policy
    • /
    • v.33 no.4
    • /
    • pp.85-118
    • /
    • 2011
  • This paper uses the horizontal regulation system as the base analysis framework. The study clearly defines the regulatory goals of the followings: the horizontal cross-ownership regulations on program provider (PP) and platform provider, the vertical regulation on cross-ownership between PP and platform operator, the regulation on cross-ownership of program provider by terrestrial broadcasting company, and the regulation on cross-ownership between terrestrial broadcasting company and platform provider. Then, by analyzing the conformity between goals and criteria of regulations and the adequacy of the regulation level according to regulatory purposes, this paper examines the justifiability of each regulation and extracts improvement measures that suite regulatory purposes. This analysis finds following appropriate measures: replacing the horizontal cross-ownership regulation on PP with conduct regulations, such as designating major broadcasting programs or replacing the current criterion of cross-ownership regulation from sales to the audience market share; reshaping the horizontal cross-ownership regulation on platform provider so that system operator (SO), satellite broadcaster and Internet protocol television (IPTV) operator would be applied by the same regulation based on the number of subscribers of pay television services; and discontinuing other cross-ownership regulation. In this way, the study shows that with appropriate regulations on cross-ownership of PP, there would be no need for additional regulation on vertical integration between PP and platform operator. On the other hand, given that the regulation on terrestrial broadcasting cross-ownership of PP could be justified only by regulatory purpose of the protection of the diversity of public opinions, it would be desirable to replace the current criteria of the number of PPs with the criteria of the audience market share. Lastly, the study shows that when platform operator is targeted by the cross-ownership regulation based on the number of subscribers of pay television services, the regulation on cross-ownership between terrestrial broadcasting company and platform provider should be replaced with conduct regulations, such as designating must-offer channels and major broadcasting programs.

  • PDF