• Title/Summary/Keyword: 정찰로봇

Search Result 53, Processing Time 0.027 seconds

Protector Design and Shock Analysis for a Launch-Reconnaissance Robot (발사형 정찰로봇을 위한 보호체 설계 및 충격해석)

  • Kang, Bong-Soo;Park, Moon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.971-976
    • /
    • 2011
  • This paper presents the design concepts of a protector for a launch-reconnaissance robot that is to be deployed for data-collection in hazardous regions. The protector protects the reconnaissance robot inside from shock induced during the process of launch, flight, and landing. Since the outer shells of the protector are automatically opened wide by the unlocking mechanism during the landing stage, the reconnaissance robot can easily exit the protector and move around to carry out its mission. We carefully simulated a finite-element model of the protector with the robot and compared the results with the actual dynamic behavior of the system. Shock- response tests using a droptable showed that the proposed protector filled with silicon material successfully attenuated external shock.

Development of Fracture-Type Protector for a Launching Reconnaissance Robot (발사형 정찰로봇을 위한 파단형 보호체 개발)

  • Kang, Bong-Soo;Cho, Yoon-Ho;Choi, Jeong-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1473-1478
    • /
    • 2012
  • This paper presents the development of a fracture-type protector for carrying a reconnaissance robot to a remote target area. Instead of a conventional unlocking mechanism, a separation method based on the fracture of assembled parts was implemented in the proposed lightweight protector in order to improve the feasibility for a real battlefield. Simulations using the finite element model of the protector and the robot were performed to verify the fracture under the given loading conditions, and shock experiments using a drop table were performed to calculate shock transmittance through the protector to the robot. Several field tests for a 100-m flight proved that the proposed scenario (launching, flying, landing, and separation) was achieved successfully.

Design of the Patrol Robot with Variable Weels (가변구동 정찰로봇 시스템 설계)

  • Hwang, Sun-Myung;Jo, Ja-Yun
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.697-709
    • /
    • 2010
  • The patrol robot is a typical extreme robot for the military use. It helps soldiers by detecting and informing a potential risk instead, and warning earlier. Also, these kinds of extreme robots need good ability to conquest rough road. In this paper, we studied new mechanism through which we can get high speed on the flat road with round shape wheels, and simultaneously can get good ability to overcome rough road with blade-shape wheels. The shape of the wheels is being self-adaptively changed automatically according to the condition of the road without using additional actuator.

Performance Evaluation of Search Robot Prototypes for Special Disaster Areas (특수재난지역 정찰로봇 시제품의 성능평가연구)

  • Kwark, Jihyun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.109-118
    • /
    • 2015
  • Recently, three kinds of search robot prototypes were developed to assume the role of fire fighters for search and rescue missions in special disaster areas with high heat, smoke, toxic gases, or radioactivity. To accomplish search missions, these robots should be able to endure heat, overcome various obstacles, suppress fires, and see through dense smoke. This study investigated the heat resistance, practicality, and fire fighting capacity of these robots. The results show that the small and middle-sized robots were resistant to surrounding temperatures of $100{\sim}200^{\circ}C$, and the fire-fighter-riding robot could endure up to $500^{\circ}C$ for half an hour. The fire-fighter-riding robot showed excellent extinguishing performance on an A-10 class fire model, which was extinguished within 3 min. The robots also showed various capacities for overcoming obstacles and are expected to play an active role in various special disaster areas.

Design and Implementation of Surveillance and Combat Robot Using Smart Phone (스마트폰을 이용한 정찰 및 전투 로봇의 설계와 구현)

  • Kim, Do-Hyun;Park, Young-Sik;Kwon, Sung-Gab;Yang, Yeong-Yil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.93-98
    • /
    • 2011
  • In this paper, we propose the surveillance and combat robot framework for remote monitoring and robot control on the smart phone, which is implemented with the fusion technology called RITS(Robot technology & Information Technology System). In our implemented system, the camera phone mounted on the robot generates signals to control the robot and sends images to the smart phone of the operator. Therefore, we can monitor the surrounding area of the robot with the smart phone. Besides the control of the movement of the robot, we can fire the weapons armed on the robot by sending the fire command. From experimental results, we can conclude that it's possible to control the robot and monitor the surrounding area of the robot and fire the weapons in real time in the region where the 3G(Generation) mobile communication is possible. In addition, we controlled the robot using the 2G mobile communication or wired phone when the robot is in the visual range.

위험작업 로봇 ROBHAZ

  • Lee, U-Seop;Gang, Seong-Cheol
    • Journal of the KSME
    • /
    • v.48 no.9
    • /
    • pp.44-48
    • /
    • 2008
  • 이 글은 화재 및 지진과 같은 재난상황과 위험물 처리와 위험지역 정찰 등의 위험작업에 활용될 수 있도록 개발된 로봇 ROBHAZ(Robot for Hazardous)에 대해 소개하고자 한다.

  • PDF

A Study on Visible Light Communication Indoor location of iGS Robot (가시광통신을 이용한 실내형 자율 주행 로봇의 위치 추정에 관한 연구)

  • Park, Ki-Hyun;Jo, Kyung-Hwa;Lee, Jang-Woo;Lee, Seung-Yup;Kim, Eung-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.377-378
    • /
    • 2015
  • 실내형 자율 주행 로봇에서의 가장 중요한 기술력은 IGS(indoor GPS System)라 할 수 있다. 재난로봇이나 정찰로봇, 경계로봇등 새로운 로봇의 영역이 늘어남에 따라 실내에서 로봇을 안전하게 구동시키는 연구가 활발히 진행되고 있다. 기존 GPS를 사용할 수 없는 실내에서, LED 조명으로 통신이 가능한 가시광통신은 실내위치 정보를 정밀히 파악하기에 적합하다. 이에 가시광통신을 이용하여 LED 조명별 기준위치를 파악하는 서로 다른 16진수의 데이터를 전송하고, 그 위치를 파악하여 LED 조명의 위치를 식별할 수 있음을 확인한다. 이러한 실험결과를 통하여 가시광통신을 이용해 실내형 자율 주행 로봇의 실내 위치 추정 시스템을 제안한다.

Applications and Strategies on Defense Acquisition based CPS & IoT Technology (사이버물리시스템(CPS)과 사물인터넷(loT) 기술의 군사적 활용방안 및 추진전략)

  • Kye, J.E.;Park, P.J.;Kim, W.T.;Lim, C.D.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.4
    • /
    • pp.92-101
    • /
    • 2015
  • 미래 전장은 정보 지식 기반의 첨단 전력체계를 확충하기 위해 향후 전력구조를 통합, 지휘통제통신(C4I) 체계와 생존성과 통합성이 향상된 전장의 네트워크중심전(NCW) 수행능력을 향상시킬 것이다. 사이버물리시스템(Cyber-Physical Systems: CPS)은 함정전투체계에 적용되고 있는 DDS를 포함하여 국방 M&S의 근간인 Live, Virture, Constructive(L-V-C) 체계의 큰 축을 형성하고 있다. 사물인터넷(Internet of Things: IoT) 기술은 센서네트워크, 통신, Radio Frequency Identification(RFID), Ubiquitous Sensor Network(USN), Machine to Machine(M2M), D2D 기술 및 상황인지, 지능서비스를 위한 정보수집/가공/융합/분석/예측기술을 포괄적으로 포함한 기술로서 미래산업을 이끌어 갈 차세대 선도 기술이며, 특히 군사적으로도 감시정찰 센서네트워크(USN), 견마형로봇, 경전투로봇과 무인기 기술 및 전술정보통신망체계(TICN) 등 첨단 통신네트워크 기술의 전력화 추세는 IoT 기술의 적용영역을 넓혀주고 있다. 감시정찰체계(Sensor)에서는 감시정찰 분야 영상정보 처리, 표적탐지 등과 관련된 IoT 기술 소요와 지휘통제통신(C4I) 체계의 상호운용성, 데이터링크, 지능형 통신체계 등 C4I 관련 IoT 기술 소요 및 타격체계(Shooter)의 내장형 SW 등 유 무인 무기체계 관련 IoT 기술의 소요가 증대될 것으로 예상된다. 본고는 CPS 및 IoT 기술의 군사적 활용방안 및 획득전략에 대한 적용기술 및 발전방향을 살펴본다.

  • PDF

The Development of Small-sized Launchable Robot for Reconnaissance (발사형 소형정찰 로봇 개발)

  • Lee, Seung-Ho;Jung, Won-Suk;Lee, Min-Gu;Park, Ji-Hyuk;Park, Hyun-Soo;Yoo, Kyu-Jae;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.535-542
    • /
    • 2012
  • Recently, the study on small-sized reconnaissance robot has been progressed through grafting robot technology to military fields for minimizing the casualties. Especially, throwable robots have been focusing for their's efficiency in anti-terror operation. However, it is impossible to launch throwable robot to long range(approximately 100m) by hand. So we need another type of robots, so called launchable robots, which can launch farther and is more accurate by launcher. In this paper, we presented the process of developments of launchable robots('launchbot') which are available for remote launch from collection of user's opinions to field test. Based on the opinions of users, we established the goal of development, designed and manufactured the robots. Through the field test, we found that our launchable robot satisfied the performance requirements.