• Title/Summary/Keyword: 정제 봉독

Search Result 12, Processing Time 0.027 seconds

The stability comparison of purified bee venom and bee venom melittin in aqueous solution (수용액에서 정제봉독 (PBV)과 봉독멜리틴 (BVM)의 안정성 비교)

  • Park, Jung Keun;Shen, Chang Zhe;Kim, Choul Goo;Kim, Il Kwang
    • Analytical Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.194-201
    • /
    • 2016
  • The stability comparison tests on purified bee venom (PBV) and bee venom melittin (BVM) in different conditions of temperature, solvent, and concentration were studied. High purity BVM (98.2 %) was separated from PBV by prep-HPLC (column, C4) and used to stability tests in aqueous phase. The stability of the PBV has been increased in the saline solution, while BVM was reduced. In distilled water, the stability of PBV has been reduced, while BVM showed an increasing result. As a result, the appropriate conditions for maintaining the long term stability of BVM were found to be the low temperature (4 ℃), distilled water, and concentration (1.0 mg/mL).

Inhibitory Effect of Purified Bee Venom(Apis mellifera L.) on Adipogenesis in Korea (국내 양봉농가에서 채취한 정제봉독(Apis mellifera L.)의 지방세포 분화 억제 효과)

  • Han, Sang Mi;Kim, Hyo Young;Woo, Soon Ok;Kim, Se Gun;Choi, Hong Min;Moon, Hyo Jung
    • Journal of Apiculture
    • /
    • v.35 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • Bee (Apis mellifera L.) venom is used for the treatment of various human diseases due to its known anti-inflammatory and antibacterial properties. This study investigated the effect of purified bee venom (PBV) on adipogenesis in 3T3-L1 preadipocytes. There was no cytotoxicity while cells were treated with PBV by various concentrations. In the PBV treated cells increases in fat storage were inhibited and also confirmed by oil red o staining. To understand the underlying mechanism at the molecular level were examined on the expression of the genes involved in adipogenesis by using real-time PCR. In this cell model, the mRNA level of adipogenic genes such as peroxisome-proliferator-activated receptors gamma (PPARγ) and CAAAT/enhancer binding protein alpha(C/EBPα) were decreased by PAE treatment, comparing with those of control group. Theses results suggest that PBV inhibits adipocyte differentiation in 3T3-L1 cells and can be used as an efficient natural substance to manage anti-obesity.

Mutagenicity Study of Purified Bee Venom (Apis mellifera L.) by the Bacterial Reverse Mutation Assay (세균을 이용한 정제봉독의 복귀돌연변이시험)

  • Han, Sang Mi;Hong, In Phyo;Woo, Soon Ok;Kim, Se Gun;Jang, Hye Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.228-233
    • /
    • 2017
  • The aim of the current study was to examine genotoxicological safety of purified bee venom (Apis mellifera L.) The bacterial reverse mutation in Salmonella typhimurium (TA100, TA1535, TA98, and TA1537) and Escherichia coli (WP2 uvrA) were evaluated with purified bee venom at concentrations of 0, 1.5, 5, 15, 50, 150, and $500{\mu}g/plate$. Purified bee venom was negative in Ames test with both in the presence and absence of rat liver microsomal enzyme. According to these results, we concluded that purified bee venom did not cause bacterial reverse mutation. The safety of the purified bee venom at practical doses needs to be further evaluated in in vivo genotoxicity assays.

ADH and ALDH Activation of Purified Bee Venom (Apis mellifera L.) (정제봉독의 ADH와 ALDH 활성 효과)

  • Han, Sang Mi;Hong, In Pyo;Woo, Soon Ok;Kim, Se Gun;Jang, Hye Ri
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.269-273
    • /
    • 2017
  • We investigated whether purified bee venom increases the enzymatic activity of the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). ADH and ALDH assay were tested by in vitro kits. The purified bee venom was assayed by ultra performance liquid chromatography, The contents of melittin, apamin and phospholipase A2, as main component of purified bee venom, were 63.9%, 2.3%, and 10.9%, respectively. The ADH and ALDH acitivity of purified bee venom(at 1mg/ml) were $88.6{\pm}7.34%$ and $94.6{\pm}0.57%$, respectively compared with positive control at 2mg/ml. These results showed that purified bee venom induces the activity of ADH and ALDH which reduce the aldehyde concentration in the blood, suggesting the possibility of purified bee venom as resource of medicine or functional beverage for hangover relieving.

Stability of main components and physiological activities of bee venom treated with pH (산도에 따른 봉독의 성분 및 생리활성에 대한 안정성)

  • Cho, Miran;Han, Sangmi;Kim, Jungmin;Yeo, Joohong;Hong, InPhyo;Woo, Soonok;Lee, Kwanggill
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.6-9
    • /
    • 2014
  • This study was for the investigation of the stability of purified bee venom (PBV) during the treatment in the pH range from pH2 to pH9 for 24 hours, respectively. Changes of components and physiological functionalities in PBV were by evaluated silver staining, and melittin contents were measured by liquid chromatography. The antimicrobial activity against bacteria by minimum inhibitory concentration (MIC) and effect of the cell regeneration were measured by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl tetrazolium bromide (MTT) assay using human dermal fibroblast (HDF) cell. The main proteins such as melittin and phospholipase $A_2$ showed no characteristic changes. The antimicrobial activity and effect of cell regeneration showed no difference from pH2 to pH9. From this study, we suggest that components and physiological functionalities of PBV against treated pH were kept stability at from pH2 to pH9.

Effects of Dietary Bee Venom on Serum Characteristic, Antioxidant Activity and Liver Fatty Acid Composition in Broiler Chickens (정제 봉독의 급여가 육계의 혈청성상, 항산화능 그리고 간 내 지방산 조성에 미치는 효과)

  • Kim, Da-hye;Han, Sang-mi;Choi, Yun-Sang;Kang, Hwan-Ku;Lee, Hong-Gu;Lee, Kyung-woo
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • This study was conducted to investigate the effect of dietary bee venom on serum characteristics, antioxidant activity, and hepatic fatty acid composition in broiler chickens. A group of 875 one-day-old feather-sexed male broiler chicks were randomly allocated to five treatments with seven replicates (25 birds/replicate) for three weeks. A corn-soybean meal-based diet was used as the basal diet. Five dietary treatments were compared: 1) basal diet, 2) basal diet containing $10{\mu}g/kg$ of bee venom powder, 3) basal diet containing $50{\mu}g/kg$ of bee venom powder, 4) basal diet containing $100{\mu}g/kg$ of bee venom powder, and 5) basal diet containing $500{\mu}g/kg$ of bee venom powder. At 21 days, one bird per pen was slaughtered by asphyxiation in $CO_2$ gas, and blood was collected to measure serum characteristics and antioxidant activity. In addition, the liver was excised to measure the concentration of malondialdehyde and determine fatty acid composition. Increasing dietary bee venom in the diet failed to affect most serum parameters except for triglyceride and non-esterified fatty acids. Dietary bee venom inclusion quadratically increased the concentration of stearic acid (P<0.05), but decreased palmitoleic acid, oleic acid, linoleic acid, mono-unsaturated fatty acids, and poly-unsaturated fatty acids. Finally, dietary bee venom tended to lower hepatic malondialdehyde contents quadratically (P=0.054). In conclusion, our study revealed that dietary bee venom improved antioxidant capacity and affected fatty acid metabolism in broiler chickens.

The Effect of Bee Venom & Purified Bee Venom on Cell Death in Synovial Cell (국산(國産) 봉독(蜂毒) 및 정제(精製) 봉독약침액(蜂毒藥鍼液)이 류머티스 관절염(關節炎) 활액세포(滑液細胞)에 미치는 영향(影響))

  • Lee, Yun-Seop;Seo, Jung-Chul;Lee, Seung-Woo;Han, Sang-Won
    • Journal of Acupuncture Research
    • /
    • v.19 no.2
    • /
    • pp.28-38
    • /
    • 2002
  • Objective : This study is aimed to investigate the effects of bee venom and purified bee venom on cell death in synovial cell line. Methods : It was evaluated by using MTT assay, morphological method, flow cytometry, immunocytochemistry analysis, RT-PCR. Results : The result obtained is as follows. 1. The MTT assay demonstrated that synovial cell viability was significantly inhibitted dose-dependently by treatment with BV and PBV in comparison with control. And the inhibitory effect of BV and PBV was almost same. 2. The morphologic study demonstrated that synovial cell showed apoptotic body resulted from apoptosis after treatment with BV and PBV for 6 hours using microscope. 3. The Flow cytometry demonstrated that apoptosis of synovial cell treated with BV and PBV was related with stop of cell cycle in stage of G0/G1. 4. Immunocytochemistry assay demonstrated that COX-II and iNOS were slightly expressed by treatment with BV and PBV in comparison with control group. 5. RT-PCR analysis demonstrated that COX-II were almost down-regulated by high dose treatment with BV and PBV in comparison with control group. iNOS were well down-regulated by treatment with $5{\mu}g/ml$ BV and PBV whereas it was well expressed in control group. Conclusion : These results suggest that bee venom and purified bee venom have significant effect on cell death in synovial cell line and further study is needed in vivo.

  • PDF

Inhibitory Effects of Purified Bee Venom on Melanin Synthesis (정제봉독의 멜라닌 생성 억제 효과)

  • Han, Sang-Mi;Kim, Jung-Min;Lee, Kyung-Gill;Park, Kwan-Kyu;Chang, Young-Chae
    • YAKHAK HOEJI
    • /
    • v.56 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • To further access honeybee (Apis mellifera L.) venom (BV) as a cosmetic ingredient and potential external treatment for topical use, we investigated its ability to inhibit tyrosinase activity and melanin biosynthesis on melanogenesis in B16F1 melanoma cells. We found that BV increased the cell viability in B16F1 melanoma cell and BV (0.01~1 ${\mu}g/ml$) inhibited melanin synthesis in with 10 nM ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) for 48 h. In addition, we used reverse transcription-polymerase chain reaction and western blotting for me melanogenesis-related genes such as tyrosinase to examine the mechanisms underlying the inhibitory effects of BV on melanogensis. BV inhibited direct tyrosinase activity, which decreased melanin synthesis in ${\alpha}$-MSH stimulated B16F1 melanoma cells. Thease findings suggest that BV induces the downregulation of melanogenesis by inhibiting tyrosinase activation.

Stimulation of the milk protein production in MAC-T cells by purified bee venom (정제봉독의 MAC-T 세포에서 유단백 합성 촉진효과)

  • Han, Sang-Mi;Woo, Soon-Ok;Kim, Se-Gun;Jang, Hye-Ri
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.3
    • /
    • pp.171-177
    • /
    • 2018
  • Purified bee venom was collected from colonies of honeybees (Apis mellifera L.) using a bee venom collector under sterile conditions and then purified under strict laboratory conditions. Purified bee venom contained $63.9{\pm}5.4%$ melittin, $10.9{\pm}1.6%$ phospholipase A2, and $2.3{\pm}0.3%$ apamin. Purified bee venom has various anti-bacterial, anti-inflammatory and immunostimulating effects. In this study, we evaluated purified bee venom which are mammary gland cells, MAC-T cells are used to increase the synthesis of milk protein. Purified bee venom promoted the proliferation of MAC-T cells at concentrations below $1{\mu}g/mL$, but cytotoxicity at $10{\mu}g/mL$ and above. As a result of the increase in the synthesis of ${\beta}-casein$, a milk protein after treatment with MAC-T cells at a concentration of the bee venom without cytotoxicity, the ${\beta}-casein$ content in the cell culture was increased when treated at a concentration of 1 ng/mL or more. In addition, it was confirmed that purified bee venom significantly increased the expression of bovine ${\beta}-casein$ (bCSNB) mRNA, a ${\beta}-casein$ synthesis gene, at a concentration of 1 ng/mL or more. These results suggest that purified bee venom can be used to increase the production of livestock by ultimately increasing the expression of milk protein.