• Title/Summary/Keyword: 정전 센싱

Search Result 19, Processing Time 0.028 seconds

Mixed-Mode Simulations of Touch Screen Panel Driver with Capacitive Sensor based on Improved Charge Pump Circuit (개선된 charge pump 기반 정전 센싱 회로를 이용한 터치 스크린 패널 드라이버의 혼성모드 회로 분석)

  • Yeo, Hyeop-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.319-324
    • /
    • 2012
  • This paper introduces a 2-dimensional touch screen panel driver based on an improved capacitive sensing circuit. The improved capacitive sensing circuit based on charge pump can eliminate the remaining charges of the intermediate nodes, which may cause output voltage drift. The touch screen panel driver with mixed-mode circuits was built and simulated using Cadence Spectre. Verilog-A models the digital circuits effectively and enables them to interface with analog circuits easily. From the simulation results, we can verify the reliable operations of the simple structured touch screen panel driver based on the improved capacitive sensing circuit offering no voltage drift.

Development of Capacitive Sensing Based Self-sustainable Water Monitoring Sensor Node for Plant Growth Management (정전용량 센싱기반 식물생장관리용 자기유지 지원 수분 모니터링 센서노드 설계)

  • Song, Min-Hwan;Lee, Sang-Shin;Won, Kwang-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.986-988
    • /
    • 2012
  • 최적의 식물 생장을 위해서는 적절한 수분의 유지가 필수적이며 넓은 지역, 다양한 종류, 고가의 식물의 경우일수록 적절한 수분의 관리를 위한 시스템의 도움이 필요하다. 이를 위해 저가의 센서노드 시스템이 적절한 해결책이 될 수 있으나 일반적인 배터리 기반의 센서노드 시스템을 적용시 배터리 용량 확인 및 교체 등의 유지보수 문제가 대두된다. 본 논문에서는 이러한 유지보수의 문제를 해결하고 식물재배에 도움을 줄 수 있는 자기유지 지원 방식의 정전용량 센싱기반의 수분 모니터링 센서노드를 설계하였다. UHF 기반의 무선 전력 전송의 자기유지 지원 시스템 및 PCB 패턴기반의 정전용량센싱 수분센서와 초저전력 센서노드 시스템으로 구성된다. 센서노드는 한번 송신시 약 0.24 mJ을 소모하며 에너지획득모듈은 에너지 획득 주기마다 약 4 mJ의 에너지를 공급하도록 설계하여 센서동작을 위한 충분한 에너지 마진을 주도록 설계하였다.

Multi-touch Recognition and Tracking for Self Capacitive TSP (자기정전용량 방식의 TSP에서 멀티터치 인식 및 추적)

  • Jung, Sung Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.136-140
    • /
    • 2014
  • This paper introduces a multi-touch recognition and tracking method for self capacitive TSP(Touch Screen Pannel). Self capacitive TSP recognizes finger touches by sensing capacitive change of ITO transparent conducting film arranged by rows and columns on the TSP pannel. They have some advantages such as high SNR, fast sensing, and simple touch processing, but have very difficulties for multi-touch processing. This disadvantage makes that the mutual capacitive TSPs, which have no such disadvantage, have been more widely used especially for multi-touch applications. However, since the other applications for remote control pad or recently developed wearable devises have only restrictive requirements for multi-touch, the disadvantage of self capacitive TSP is not a critical problem. In this paper, we first describe multi-touch recognition problems in self capacitive TSP and then propose how to overcome those problems and a tracking method of two touches when they are moving. Experimental results of our method showed that our algorithm works well in two touches.

A Full Digital Capacitive Sensor for Touch Key Applications (터치키 응용을 위한 풀 디지털 정전용량 센서)

  • Seong, Kwang-Su;Lee, Mu-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.25-30
    • /
    • 2009
  • In this paper, a full-digital capacitive sensor for touch key applications is proposed. The proposed circuit consists of two capacitive loads to measure and a resistor between the capacitive loads. As the method measures the delays of the resistor and two capacitive loads respectively, and obtains difference between the capacitive loads by subtracting the two delays, it can reduce the effects of changing of operating environment variables such as supplying voltage, temperature and humidity. Experimental results show the method has l.02pF resolution and can be applied to touch key applications.

A Study of Pressure Sensor for Environmental Monitoring (환경 모니터링을 위한 압력 센서 연구)

  • Hwang, Hyun-Suk;Choi, Won-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.225-229
    • /
    • 2011
  • In this study, capacitive type pressure sensors based on low temperature co-fired ceramics (LTCC) technology for environmental monitoring were demonstrated. The LTCC is one of promising technology than is based one since it has many advantages (e.g., low cost production, high manufacturing yields and easy realizing 3D structure etc.) for sensor application. Especially, it has good mechanical and chemical properties for robust environmental application. The 3D LTCC diaphragm with thickness of 400 ${\mu}m$ were fabricated by laminating 4 green sheets using commercial powder (NEG, MLS 22C). To evaluate the sensing properties of the different cavity areas, two types of diaphragm which had different cavity areas with 25, 49 $mm^2$ respectively, were fabricated. To realize capacitive type pressure sensor, the Au top electrode was fabricated using thermal evaporator and the bottome electrode was compressed using aluminium foil. The sensing properties of the fabricated sensors showed linear characteristic under different pressure (0~30 psi) using pressure measurement system.

A MEMS Z-axis Microaccelerometer for Vertical Motion Sensing of Mobile Robot (이동 로봇의 수직 운동 감지를 위한 초소형 MEMS Z축 가속도계)

  • Lee, Sang-Min;Cho, Dong-Il Dan
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.249-254
    • /
    • 2007
  • 본 논문에서는 웨이퍼 레벨 밀봉 실장된 수직 운동 가속도 신호를 감지할 수 있는 초소형 Z축 가속도 센싱 엘리먼트를 제작하였다. 초소형 Z축 가속도 센싱 엘리먼트는 수직 방향의 정전용량 변화를 필요로 하기 때문에 단일 기판상에 수직 단차의 형성을 가능케 하는 확장된 희생 몸체 미세 가공 기술 (Extended Sacrificial Bulk Micromachining, ESBM) 을 이용하여 제작되었다. 확장된 희생 몸체 미세 가공 기술을 이용하면 정렬오차가 없이 상하부 양쪽에 수직 단차를 갖는 실리콘 구조물의 제작이 가능하다. 또한, MEMS 센싱 엘리먼트의 부유된 실리콘 구조물을 보호하기 위하여 웨이퍼 레벨 밀봉 실장 기술이 적용하여 고신뢰성, 고수율, 고성능의 Z축 가속도 센서를 제작하였다. 신호 처리 회로와 가속도 센서를 결합하여 Z축 가속도 센싱 시스템을 제작하였고 운동가속도 범위 10 g 이상, 정지 드리프트 17.3 mg 그리고 대역폭 60 Hz 이상의 성능을 나타내었다.

  • PDF

A Design of Full Digital Capacitive Sensing Touch Key Reducing The Effects Due to The Variations of Resistance and Clock Frequency (저항과 클록 주파수 변동에 의한 문제를 감소시킨 풀 디지털 방식 정전용량 센싱 터치키 설계)

  • Seong, Kwong-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.39-46
    • /
    • 2009
  • In this paper, we propose a full digital capacitive sensing touch key reducing the effects due to the variations of resistance and clock frequency. The proposed circuit consists of two capacitive loads to measure and a resistor between the capacitive loads. The method measures the delays of the resistor and two capacitive loads, respectively. The ratio of the two delays is represented as the ratio of the two capacitive loads and is irrelative to the resistance and the clock frequency if quantization error is disregarded. Experimental results show the proposed scheme efficiently reduces the effects due to the variations of clock frequency and resistance. Further more the method has l.04[pF] resolution and can be used as a touch key.

Dual Sensing with Voltage Shifting Scheme for High Sensitivity Touch Screen Detection (고감도 터치스크린 감지를 위한 양방향 센싱과 전압쉬프팅을 이용한 센싱 기법)

  • Seo, Incheol;Kim, HyungWon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.71-79
    • /
    • 2015
  • This paper proposes a new touch screen sensing method that improves the drawback of conventional single-line sensing methods for mutual capacitance touch screen panels (TSPs). It introduces a dual sensing and voltage shifting method, which reduces the ambient noise effectively and enhances the touch signal strength. The dual sensing scheme reduces the detection time by doubling the integration speed using both edges of excitation pulse signals. The voltage shifting method enhances the signal-to-noise ratio (SNR) by increasing the voltage range of integrations, and maximizing the ADC's input dynamic range. Simulation and experimental results using a commercial 23" large touch screen show an SNR performance of 43dB and a scan rate 2 times faster than conventional schemes - key properties suited for a large touch screen panels. We implemented the proposed method into a TSP controller chip using Magnachip's CMOS 0.18um process.

Touchless Buttons for Elevators using a Capacitance Sensor and Analog Multiplexers (정전용량 센서와 아날로그 멀티플렉서를 이용한 엘리베이터용 비접촉 버튼)

  • Ji-Young Lee;Gwanghyeon Jeong;Jusung Kim;Dong-Ho Lee
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.228-233
    • /
    • 2024
  • Due to the recent COVID-19 pandemic, various methods have been devised to prevent infections caused by physical contact. Among them, a non-contact button was developed to prevent infections in elevators, where many contacts occur in daily life. In this study, an active shield type capacitance sensor is used to detect changes in capacitance when a finger approaches. There is no static power consumption, and the relatively expensive ADC and MCU are reduced to one by sensing buttons every time using analog switches. In addition to the elevator buttons, this technology is expected to replace push-type buttons that many people contact in everyday life.

Mixed-Mode Simulations of Touch Screen Panel Driver with Capacitive Sensor using Modified Charge Pump Circuit (Charge pump 기반 정전 센싱 회로를 이용한 터치스크린 패널 드라이버의 혼성모드 회로 분석)

  • Yeo, Hyeop-Goo;Jung, Seung-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.875-877
    • /
    • 2011
  • This paper introduces a touch screen panel driver using modified charge pump circuit. The touch screen panel driver is composed of an analog circuit part which senses a touch and a digital circuit which analyse the sensed signal. To verify the functions the touch screen panel driver, a mixed-mode circuit was built and simulated using Cadence Spectre. The digital circuits were modeled with Verilog-A in order to interface with the analog circuits and verify the functionalities of the driver with less simulation time. From the simulation results, we can verify the reliable operations of the simple structured touch screen panel driver which does not include an ADC.

  • PDF