• Title/Summary/Keyword: 정전선별

Search Result 47, Processing Time 0.026 seconds

Simulation on the PCB Particle Trajectories in Corona-discharge Electrostatic Separator (코로나 방전 정전선별기 내 PCB 입자의 이동궤도 시뮬레이션)

  • Han, Seongsoo;Park, Seungsoo;Kim, Seongmin;Park, Jaikoo
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.30-39
    • /
    • 2014
  • The trajectories of PCB(Printed Circuit Board) particles in the corona discharge electrostatic separation was simulated. The PCB particles are prepared by crushing bare board, which disassembled from electronic components, consist mostly of copper and FR-4(Flame Retardant Level-4) Firstly, a model was established for calculating of detachment points of PCB particles from the rotating electrode in separator. The model of detachment points was derived from equilibrium of force such as gravity force, centrifugal force, electrostatic force. The trajectories of particles after detachment was calculated by acceleration derived from time-integrating method of motion equation. In this simulation, particle size, supplied voltage, rotation speed of rotating roll electrode and angle of induction electrode were adopted as variables. While the trajectories of FR-4 particles were affected by all variables, rotation speed of rotating roll electrode was dominant variables affecting trajectories of copper particles.

Study on Reduction Unburned Carbon Contents in Low Quality Fly Ash from Vietnam (베트남 저품위 비산재의 미연탄소 함량 저감 연구)

  • Kim, Keeseok;Lee, Jaewon;Lee, Dongwon;Min, Kyongnam
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.37-47
    • /
    • 2020
  • According to Vietnam government establishes additional thermal power plant, processing the coal ash from power plant is urgent issue. This study targeted reducing unburned carbon contents in low quality fly ash to below 6% that according to international standards. As a result, the unburned carbon contents of low quality fly ash was high and irregular as 5.3~23.6%, and it was possible to reduce unburned cabon contents to under 6%, in case of unburned carbon contents below 9.8% ashes using air classification, in case of unburned carbon contents below 23.6% ashes using combined process composed of air classification and electrostatic separation.

Development of Triboelectrostatic Separation Technique for Material Separation of ABS and PS Mixed Plastic Waste (ABS와 PS 혼합(混合) 폐플라스틱 재질분리(材質分利)를 위한 마찰하전형정전선별(摩擦荷電型靜電選別) 기술개발(技術開發))

  • Lee, Eun-Seon;Baek, Sang-Ho;Kim, Su-Kang;Choi, Woo-Zin;Chin, Ho-Ill;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.33-40
    • /
    • 2013
  • Due to the environmental problem caused by plastics largely used in various fields, the importance of recycling is being emphasized. A research on material separation of ABS and PS mixed plastic waste, using a triboelectrostatic separator, was carried out for recovery the ABS. As a results of research on charging characteristic for choosing charging material, it was confirmed that ABS was optimum charging material for a tribo-charger in the material separation of ABS and PS. In the material separation using ABS charger, ABS grade of 99.5% and recovery of 92.5% were achieved at 20 kV, splitter position +2 cm from the center and 30% relative humidity. Therefore, material separation technique for recycling ABS and PS mixed plastic waste was established.

Development of Recycling Technique of Mill Reject Produce using Ttiboelectrostatic Separation (마찰하전형정전선별법을 이용한 Mill Reject 산물 재활용 기술개발)

  • 전호석;한오형;신선명;윤로한
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.20-27
    • /
    • 2002
  • This study was to develop the triboelectrostatic separation technique to recycle the coal from about 20% of mill reject products remained by grinding process in the coal thermoelectric power plant. In this study, we get a test results that can product the cleaned coal of 15% ash content and 66.23% recovery from mill reject of 47% ash content. And then, from the result of the releases analysis, we proved the excellence of treatment method, after showing the treament processing which is able to get 80% of recovery of coal from 20% of ash content demanded in the power plant.

A Study on Physical Characteristics and Plastics Recycling of Used Small Household Appliances (폐소형가전의 물리적 성상 분석 및 플라스틱 재활용에 관한 연구)

  • Choi, Woo Zin;Park, Eun Kyu;Kang, Seok Hwan;Jung, Bam Bit;Kim, Soo Kyung
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Small household appliances such as electric rice cooker, a vacuum cleaner, an electric fan, etc. are diverse and complex due to the materials and components and waste streams from the manufacturing processes. In the present study, physical characterization of small e-wastes was analyzed on major items including electric rice cooker after manual dismantling. Small household appliances is an important potential source of waste plastic, however, recycling plastics from small e-waste is still unusual. The present communication gives results of separation processes on black plastics and the limitations of these sorting processes in used small household appliances.

A Study on Material Separation of Heavy Group Plastics by Triboelectrostatic Separation (마찰하전형(摩擦荷電型) 정전선별(靜電選別)에 의한 고비중(高比重) 플라스틱 혼합물(混合物)의 재질분리(材質分離)에 관한 연구(硏究))

  • Jeon, Ho-Seok;Baek, Sang-Ho;Park, Chul-Hyun;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.56-62
    • /
    • 2007
  • In this study, we carried out the research on triboelectrostatic separation for heavy group plastics (PET, PVC) recovered from wet gravity separation. From the research on charging characteristic for the choice of charging materials, it was found that PP was optimum charging material to make high charging amount with opposite polarity for PET and PVC of heavy group. Therefore, we manufactured a charger of cyclone type using PP material for separation of PET and PVC. At optimum test conditions that used PP cyclone charger developed in this study, we developed a triboelectrostatic separation technique that can separate PET plastic up to grade of 98.5% and recovery of 86.2%. We established new separation technology that could recycle the PET and PVC heavy group plastics recovered from wet gravity separation.