• Title/Summary/Keyword: 정전기적 자기조립법

Search Result 3, Processing Time 0.019 seconds

Fabrication of an Alternating Multilayer Film of Poly(ethylene-alt-maleic anhydride) and Poly(4-vinyl pyridine) by Layer-by-Layer Self-Assembly Method (Layer-by-Layer 자기조립법에 의한 Poly(ethyiene-alt-maleic anhydride)i Poly(4-vinyl pyrtdine) 다층막 제조)

  • Lee Joon Youl;Hong Sook-Young
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.392-398
    • /
    • 2005
  • Self-assembled multilayer thin films of poly(ethylene-alt-maleic anhydride) (PEMAh) and poly(4-vinyl pyridine) (P4VP) were fabricated by layer-by-layer (LbL) sequential adsorption. Fourier transform infrared (FT-IR) spectroscopic analysis of the self-assembled PEMAh/P4VP multilayer films confirms that the driving forces for the multilayer buildup are the intermolecular hydrogen bonding and electrostatic interactions. The linear increase of absorption peak of P4VP at 256 nm with increasing number of PEMAh/P4VP bilayers indicates that the multilayer buildup is an uniform assembling process. We also investigate the effects of polyelectrolyte concenhation variation of the dipping solution and pH variation of the PEMAh solution on the multilayer film formation. Thickness. adsorbed polyelectrolyte mass and surface roughness of the multilayer films were measured by UV-visible spectroscopy, quartz crystal microbalance (QCM), and atomic force microscopy (AFM), respectively.

Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications (층상자기조립법을 이용한 나노구조체의 제조와 응용)

  • Cho, Jin-Han
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with antireflective properties. Protonated polystyrene-block-poly (4-vinylpyrine) (PS-b-P4VP) and anionic polystyrene-block-poly (acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the oppositely BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (Mw) of the constituents. PS7K-b-P4VP28K/PS2K-b-PAA8K films prepared at pH 4 (for PS7K-b-P4VP28K) and pH 6 (for PS2K-b-PAA8K) are highly nanoporous and antireflective. In contrast, PS7K-b-P4VP28K/PS2K-b-PAA8K films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS2K-b-PAA8K. Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS36K-b-P4VP12K/PS16K-b-PAA4K at pH 4/4) were also nanoporous. Furthermore, we demonstrate that the nanostructured electrochemical sensors based on patterning methods show the electrochemical activities. Anionic poly(styrene sulfonate) (PSS) layers were selectively and uniformly deposited onto the catalase (CAT)-coated surface using the micro-contact printing method. The pH-induced charge reversal of catalase can provide the selective deposition of consecutive PE multilayers onto patterned PSS layers by causing the electrostatic repulsion between next PE layer and catalase. Based on this patterning method, the hybrid patterned multilayers composed of platinum nanoparticles (PtNP) and catalase were prepared and then their electrochemical properties were investigated from sensing $H_2O_2$ and NO gas. This study was based on the papers reported by our group. (J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007)).