Layer-by-Layer 자기조립법에 의한 Poly(ethyiene-alt-maleic anhydride)i Poly(4-vinyl pyrtdine) 다층막 제조

Fabrication of an Alternating Multilayer Film of Poly(ethylene-alt-maleic anhydride) and Poly(4-vinyl pyridine) by Layer-by-Layer Self-Assembly Method

  • 이준열 (경희대학교 환경 응용화학대학 고분자 섬유 신소재) ;
  • 홍숙영 (경희대학교 환경 응용화학대학 고분자 섬유 신소재)
  • Lee Joon Youl (Department of Advanced Polymer and Fiber Materials, College of Environment and Applied Chemistry, Kyung Hee University) ;
  • Hong Sook-Young (Department of Advanced Polymer and Fiber Materials, College of Environment and Applied Chemistry, Kyung Hee University)
  • 발행 : 2005.07.01

초록

Layer-by-layer(LbL) 흡착에 의한 poly(ethylene-alt-m미? anhydride) (PEMAh)/poly(4-vinyl pyridine) (P4VP) 자기조립 다층박막을 제조하였다. 자기조립 다층막을 이루는 PEMAh/P4VP 두 고분자 사이의 수소 결합과 정전기적 인력이 다층막을 이루는 원동력이라는 것이 푸리에 변환 적외선(FT-IR) 분광분석에 의해서 확인되었다. 다층막의 균일한 자기조립 과정은 PEMAh/P4VP 이중층막의 적층 수 증가에 따른 UV-vis 스펙트럼의 256 nm에서 나타나는 P4VP 특성 흡수 피크의 선형적 증가에 의해서 확인할 수 있었다. 다층막을 이루는 고분자 전해질 담지 용액의 조건 변화가 다층막 형성에 미치는 영향을 살펴보기 위하여 두 고분자 용액의 농도 및 PEMAh 담지용액의 pH를 변화시키면서 다층막을 제조하였다. 다층막의 두께, 흡착된 고분자 전해질 질량 및 표면 거칠기의 변화를 UV-vis 분광 분석, 수정진동자 미량저울(quartz crystal microbalance;QCM) 및 원자 힘 현미경(atomic force microscopy;AFM)을 이용하여 측정하였다.

Self-assembled multilayer thin films of poly(ethylene-alt-maleic anhydride) (PEMAh) and poly(4-vinyl pyridine) (P4VP) were fabricated by layer-by-layer (LbL) sequential adsorption. Fourier transform infrared (FT-IR) spectroscopic analysis of the self-assembled PEMAh/P4VP multilayer films confirms that the driving forces for the multilayer buildup are the intermolecular hydrogen bonding and electrostatic interactions. The linear increase of absorption peak of P4VP at 256 nm with increasing number of PEMAh/P4VP bilayers indicates that the multilayer buildup is an uniform assembling process. We also investigate the effects of polyelectrolyte concenhation variation of the dipping solution and pH variation of the PEMAh solution on the multilayer film formation. Thickness. adsorbed polyelectrolyte mass and surface roughness of the multilayer films were measured by UV-visible spectroscopy, quartz crystal microbalance (QCM), and atomic force microscopy (AFM), respectively.

키워드

참고문헌

  1. A. Ulman, An Introduction to Ultrathin Films from Langmuir-Blodgett to Self-Assembly, Academic Press, Boston, 1991
  2. G. Decher, J. D. Hong, and J. Schmitt, Makromol. Chem. Macromol. Symp., 46, 321 (1991)
  3. G. Decher, J. D. Hong, and J. Schmitt, Thin Solid Films, 210, 831 (1992) https://doi.org/10.1016/0040-6090(92)90417-A
  4. G. Decher, Science, 277, 1233 (1997)
  5. K. Char and J. Cho, Polym. Sci. Tech.(Koera), 15, 260 (2004)
  6. D. Yoo, S. S. Shiratori, and M. F. Rubner, Macromolecules, 31, 4309 (1998) https://doi.org/10.1021/ma9800360
  7. S. S. Shiratori and M. F. Rubner, Macromolecules, 33, 4213 (2000) https://doi.org/10.1021/ma991645q
  8. A. C. Fou, O. Onituka, M. Ferreia, M. Hsieh, and M. F. Rubner, J. Appl. Phys., 79, 7501 (1996) https://doi.org/10.1063/1.362421
  9. W. B. Stockton and M. F. Rubner, Macromolecules, 30, 2717 (1997) https://doi.org/10.1021/ma9700486
  10. Y. Lvov, K. Ariga, I. Ichinose, and T. Kunitake, J. Am. Chem. Soc, 117,6117(1995) https://doi.org/10.1021/ja00127a026
  11. L. Y. Wang, Z. Q. Wang, X. Zhang, J. C. Schen, L. F. Chi, and H. Fuchs, Macromol. Rapid Commumn., 18, 509 (1997) https://doi.org/10.1002/marc.1997.030181202
  12. L. Y Wang, Y. Fu, Z. Wang, Y. Fan, and X. Zhang, Langmuir, 15, 1360 (1999) https://doi.org/10.1021/la981181+
  13. J. H. Cheung, B. Stocton, and M. F. Rubner, Macromolecules, 30, 2712(1997) https://doi.org/10.1021/ma970047d
  14. J. D. Mendelsohn, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes, and M. F. Rubner, Langmuir, 16, 5017 (2000) https://doi.org/10.1021/la000075g
  15. M. F. Rubner, 'pH-Controlled Fabrication of Polyelectrolyte Multilayers: Assembly and Applications', in Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, G. Decher and J. B. Schlenoff Editors, Wiley-VCH, Weinheim, Germany, p 133 (2003)
  16. P. T. Hammond and G. M. Whitesides, Macromolecules, 28, 7569 (1995) https://doi.org/10.1021/ma00126a040
  17. S. Y. Yang and M. F. Rubner, J. Am. Chem. Soc., 124, 2100 (2002) https://doi.org/10.1021/ja017681y
  18. S. Y. Yang, J. D. Mendelsohn,and M. F. Rubner, Biomacromolecules, 4, 987 (2003) https://doi.org/10.1021/bm034035d
  19. S. A. Sukhishvili and S. Granick, J. Am. Chem. Soc., 122, 9550 (2000) https://doi.org/10.1021/ja002410t
  20. S. A. Sukhishvili and S. Granick, Macromolecules, 35, 301 (2002) https://doi.org/10.1021/ma011278u
  21. E. Kharlampieva and S. A. Sukhishvili, Macromolecules, 36, 9950 (2003) https://doi.org/10.1021/ma0350821
  22. J. Cho and F. Caruso, Macromolecules, 36, 2845 (2003) https://doi.org/10.1021/ma021049n
  23. J. Cho, J. F. Quinn, and F. Caruso, J. Am. Chem. Soc, 126, 2270 (2004) https://doi.org/10.1021/ja037954k
  24. D. Barum, R. Sauerwein, and G. P. Hellman, Macromol. Symp., 163, 59 (2001)
  25. H. Yoshizawa, E. Kamio, N. Hirabayashi, J. Jacobson, and Y. Kitamura, J. Microencapsul., 21, 241 (2004) https://doi.org/10.1080/02652040410001673946
  26. Q. Liu, J. R. Du Wijn, and C. A. Van Blitterswijk, Eur. Polym. J., 33, 1041 (1997) https://doi.org/10.1016/S0014-3057(96)00303-5
  27. M. Ratzsch, Prog. Polym. Sci., 13, 277 (1988) https://doi.org/10.1016/0079-6700(88)90001-9
  28. C. Ladavere, L. Veron, T. Delair, A. Domard, C. Pichot, and B. Mandrand, Appl. Polym. Sci., 65, 2567 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970919)65:12<2567::AID-APP26>3.0.CO;2-W
  29. A. Shulkin and H. D. H. Stover, J. Membr. Sci., 209, 421 (2002) https://doi.org/10.1016/S0376-7388(02)00348-4
  30. Y. Rong, H. Chen, D. Wei, J. Sun, and M. Wang, Colloid Surf. A: Physicochem. Eng. Aspects, 242, 17 (2004) https://doi.org/10.1016/j.colsurfa.2004.04.057
  31. S. T. Dubas and J. B. Schlenoff, Macromolecules, 32, 8153 (1999) https://doi.org/10.1021/ma981927a
  32. D. Li, W. Ding, X Wang, L. Lu, and X. Yang, Appl. Surf. Sci., 183, 259 (2001) https://doi.org/10.1016/S0169-4332(01)00564-5
  33. A. Baba, F. Kaneko, and R. C. Advincula, Colloids Surf. A-Physicochem. Eng. Aspects, 173, 39 (2000) https://doi.org/10.1016/S0927-7757(00)00579-3
  34. G. Sauerbrey, Z.physik, 155, 206 (1959) https://doi.org/10.1007/BF01337937
  35. R. A. Mcaloney, M. Sinyor, V. Dudnik, and M. C. Goh, Langmuir, 17, 6655 (2001) https://doi.org/10.1021/la0010572
  36. S. E. Odinokov, A. A. Mashkovshky, V. P. Glazunov, A.V. Iogansen, and B. V. Rassadin, Spectrochim. Acta, 32A, 1355 (1976)
  37. T. Kato, H. Kihara, T. Uryu, A. Fujishima, and J. M. J. Frechet, Macromolecules, 25, 6836 (1992) https://doi.org/10.1021/ma00051a018
  38. V. Villar, L. Irusta, M. J. Fernandez-Berridi, J. J. Iruin, M. Iriarte, L. Gargallo and D. Radic, Thermochim. Acta, 402, 209 (2003) https://doi.org/10.1016/S0040-6031(02)00615-9
  39. J. Y Lee, P. C. Painter, and M. M. Coleman, Macromolecules, 21, 954 (1988) https://doi.org/10.1021/ma00182a019
  40. H. Takahashi, K. Mamola, and E. K. Pyler, J. Mol. Spectrosc, 21, 217 (1966) https://doi.org/10.1016/0022-2852(66)90139-1
  41. L. Wang, S. Cui, Z. Wang, and X. Zhang, Langmuir, 16,10490 (2000) https://doi.org/10.1021/la000733x
  42. H. X. Huang, D. J. Qian, N. Nakamura, C. Nakamura, T. Wakayama, and J. Miyake, Eletrochim. Acta, 49, 1491 (2004) https://doi.org/10.1016/S0013-4686(03)00948-4
  43. F. Caruso, K. Niikura, D. N. Furlong, and Y Okahata, Langmuir, 13, 3422(1997) https://doi.org/10.1021/la960821a