• Title/Summary/Keyword: 정적불안정

Search Result 77, Processing Time 0.033 seconds

Relations among Participants in Sport for all, Satisfaction of Participation and Intention to Adhere to Exercise I (A Study on Characteristics of Participants) (생활체육 참여자와 참여만족, 운동지속의사와의 관계 I (참여자의 성격을 중심으로))

  • Lee, Sheng-Yen
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.463-472
    • /
    • 2016
  • The study was to research relations among 5 characteristic-factors of participants in sport for all, satisfaction of participation and intention to adhere to exercise. First, the implications of 5 characteristic-factors effect on satisfaction of participation are as blow. Extroversion has a positive effect on psychological satisfaction, satisfaction of relaxation, social satisfaction and physical satisfaction. Openness has a positive effect on satisfaction of relaxation and affinity has a positive effect on social satisfaction and physical satisfaction. Emotional instability has a negative effect on environmental satisfaction. Second, hierarchical regression analysis of 5 characteristic-factors effect on satisfaction of participation and intention to adhere to exercise is as follows. Characteristics-factors of participants have an effect on intention to adhere to exercise in order of extroversion and affinity. Satisfaction of participation has an effect on intention to adhere to exercise in the order of social satisfaction, satisfaction of relaxation and physical satisfaction.

Evaluation of Landing Stability of Lunar Lander Considering Various Landing Conditions (다양한 착륙환경변수를 고려한 달착륙선 착륙안정성 평가)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • In this paper, landing stability evaluation of lunar lander considering various landing conditions was performed. The status of landing stability of the lunar lander is classified into stable landing, conditionally stable landing due to sliding and unstable landing due to tip-over. In particular, the quasi-static tip-over equation was rearranged considering the phenomena of lowering the center of gravity and extension of foot-pad interval of the landing gear. These results were compared by finite element model analysis results using a commercial software ABAQUS and its validity and accuracy were verified. The verified finite element model was used for examining the tendency of various environmental variables such as landing conditions, friction coefficient, lateral speed and slope of ground.

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.

High Speed TCAM Design using SRAM Cell Stability (SRAM 셀 안정성 분석을 이용한 고속 데이터 처리용 TCAM(Ternary Content Addressable Memory) 설계)

  • Ahn, Eun Hye;Choi, Jun Rim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.19-23
    • /
    • 2013
  • This paper deals with the analysis of 6T SRAM cell stability for Hi-speed processing Ternary Content Addressable Memory. The higher the operation frequency, the smaller CMOS technology required in the designed TCAM because the purpose of TCAM is high-speed data processing. Decrease of Supply voltage is one cause of unstable TCAM operation. Thus, We should design TCAM through analysis of SRAM cell stability. In this paper we propose methodology to characterize the Static Noise Margin of 6T SRAM. All simulations of the TCAM have been carried out in 180nm CMOS process technology.

Postural Strategy by the Difference of Shoe Heel Height During Quiet Standing on an Unstable Surface (불안정 지지면에서 정적 서기 동안 구두 굽 높이의 변화에 따른 자세 조절 전략)

  • Sagong, Woo-Won;An, Duk-Hyun
    • Physical Therapy Korea
    • /
    • v.21 no.2
    • /
    • pp.28-36
    • /
    • 2014
  • The purpose of this study was to evaluate the changes in the electromyographic (EMG) activity of the trunk and the lower limb muscles during quiet standing on an unstable surface while wearing low-heeled shoes (3 cm), high-heeled shoes (7 cm) and without footwear (0 cm) in 20 young healthy women. The subjects stood on an unstable surface for 30 seconds. We examined the differences in the EMG data of the erector spinae, rectus abdominis, biceps femoris, rectus femoris, tibialis anterior, and the gastrocnemius medialis muscle. A one-way repeated analysis of variance was used to compare the effects of shoe heel height on the EMG activity with the level of significance set at ${\alpha}=.05$. The EMG activity of the erector spinae and the rectus femoris were significantly increased (p<.05) in the subjects who wore elevated heel height, while the tibialis anterior and the gastrocnemius medialis were significantly decreased (p<.05). However, the rectus abdominis and the biceps femoris exhibited no significant difference among the three conditions. The above results indicate that wearing high-heeled shoes may change the postural strategy. The findings of this study suggest that excessive heel height could contribute to an increased fall risk during quiet standing.

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF

A Study of Contingency Analysis using Generator Loss Coefficient and Load Loss Coefficient (Generator Loss Coefficient와 Load Loss Coefficient를 이용한 고장영향 분석에 관한 연구)

  • Park, Bo-Hyun;Oh, Seung-chan;Oh, Hyung-Jin;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.268-269
    • /
    • 2015
  • 복잡화된 국내 전력계통의 부하는 지속적으로 증가하는 반면 새로운 설비의 건설이 어렵고, 지역 편중화된 발전설비 때문에 선로 과부하, 고장전류, 전압안정도 문제가 발생하고 있다. 초고압 선로의 고장은 계통을 크게 불안정하게 하기 때문에 고장에 의해 영향을 받는 지역과 고장 후 계통의 조류변화를 분석하는 것은 중요하다. 현재 고장의 영향을 분석하기 위하여 조류계산을 통한 정적해석과 시모의를 통한 동적해석을 사용하다. 그리고 좀 더 큰 그림을 그리기 위하여 각종 전압안정도 지수를 사용한다. 하지만 일반적으로는 고장이후 계통에서 유효전력 흐름에 변화가 있는 지역을 분석하기 위해서는 번거로운 작업이 필요한 단점이 있다. Generation loass coefficient(GLC)는 transmmision loss factor(TLF)에서 발생한 문제를 분석하기 위해 제안되었고, load loss coefficient(LLC)는 각 부하에 전력을 공급하기 위해 발생하는 손실을 발전기별로 분석하기 위해 제안되었다. 위의 두 지수는 계통해석을 위해서 제안된 것은 아니었으나 전력조류추적기법을 기반으로하여 개발되었기 때문에 계통의 전력조류 흐름 변화에 대한 정보를 담고 있다는 특징이 있다. 본 논문에서는 GLC와 LLC의 개념에 대하여 설명하고 계통에서 발생하는 고장의 영향을 해석하는 관점에서 GLC와 LLC를 활용한다. 시뮬레이션 결과를 통해 GLC와 LLC지수로 계통에 대한 이해를 높이는 방안에 대하여 제안한다.

  • PDF

Load-shedding mount examination that consider system operation environment (계통 운영상황을 고려한 적정 부하 차단량 검토)

  • Nam, S.C.;Shin, J.H.;Cha, S.T.;Son, H.I.;Shim, E.B.;Yoon, B.H.;Kim, K.I.;Kim, T.O.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.437-438
    • /
    • 2007
  • 현재 운전 중인 765kV 선로는 평시 수도권 부하의 상당 부분을 담당하는 중요한 역할을 수행하고 있다. 이러한 선로에 고장이 발생하면 수도권에 심각한 전압 불안정 현상이 발생하게 된다. 이에 대비하여 현재 765kV 선로 차단 시 부하를 차단하는 SPS(고장파급방지장치)를 운영중이다. 그러나 현재 운영중인 SPS는 정적인 검토만을 통하여 설계되었다. 따라서 과부족 차단에 의한 계통의 과전압 혹은 저 전압 문제가 발생할 수 있다. 본 논문은 우리나라에 UVLS 시스템을 적용 하기위한 타당성 검토의 선행과정으로 현재 운영중인 SPS의 부하 차단량이 실제 계통 상황을 고려 시 적정한지에 대한 검토를 실시하고자 한다.

  • PDF

Effect of Wave-Induced Seepage on the Stability of the Rubble Mound Breakwater (동적 파랑에 의한 침투류가 사석경사식 방파구조물의 안정성에 미치는 영향)

  • Hwang, Woong-Ki;Kim, Tae-Hyung;Kim, Do-Sam;Oh, Myounghak;Park, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.13-27
    • /
    • 2018
  • To study how stable the rubble mound breakwaters are, one can look to the research of wave induced seepage flow through the pores of the rubble mound. Seepage flow is generally generated by the difference between the water level around the breakwater during a typhoon. The existing stability analysis method of the rubble mound is the static analysis which simply considers the force equilibrium taking into account the horizontal force acting on the concrete block induced by a wave (calculated by Goda equation) and the vertical force induced by the weight inclusive of the concrete block, quarry run, filter, and armor layer above the slipping plane. However, this static method does not consider the wave-induced seepage flow in the rubble mound. Such seepage may decrease the stability of the rubble mound. The stability of a rubble mound breakwater under the action of seepage was studied based on the results of CFD software (OpenFOAM) and Limit Equilibrium Method (GeoStudio). The numerical analysis result showed that the seepage flow decreased the stability of the rubble mound breakwaters. The results of the numerical analyses also revealed the stability of the rubble mound was varied with time. Especially, the most critical state happened at the condition of overtopping the concrete block, acting strong uplift pressure raising along side and underneath the concrete block, and generating high pore pressure inside rubble mound due to seepage flow. Therefore, it may be necessary to conduct a dynamic analysis considering the effect of wave-induce seepage flow together with the static analysis.

A Dynamic Buffer Allocation Scheme in Video-on-Demand System (주문형 비디오 시스템에서의 동적 버퍼 할당 기법)

  • Lee, Sang-Ho;Moon, Yang-Sae;Whang, Kyu-Young;Cho, Wan-Sup
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.9
    • /
    • pp.442-460
    • /
    • 2001
  • In video-on-demand(VOD) systems it is important to minimize initial latency and memory requirements. The minimization of initial latency enables the system to provide services with short response time, and the minimization of memory requirements enables the system to service more concurrent user requests with the same amount of memory. In VOD systems, since initial latency and memory requirement increase according to the increment of buffer size allocated to user requests, the buffer size allocated to user requests must be minimized. The existing static buffer allocation scheme, however, determines the buffer size based on the assumption that thy system is in fully loaded state. Thus, when the system is in partially loaded state, the scheme allocates user requests unnecessarily large buffers. This paper proposes a dynamics buffer allocation scheme that allocates user requests the minimum buffer size in fully loaded state as well as a partially loaded state. This scheme dynamically determines the buffer size based on the number of user requests in service and the number of user requests arriving while servicing current requests. In addition, through analyses and simulations, this paper validates that the dynamics buffer allocation outperforms the statics buffer allocation in initial latency and the number of concurrent user requests that can be supported. Our simulation results show that, in proportion to the static buffer allocation scheme, the dynamic buffer allocation scheme reduces the average initial latency by 29%~65%, and in a systems having several disks. increases the average number of concurrent user requests by 48%~68%. Our results show that the dynamic buffer allocation scheme significantly improves the performance and reduce the capacity requirements of VOD systems.

  • PDF