• Title/Summary/Keyword: 정시간 제어방식

Search Result 4, Processing Time 0.019 seconds

Development of Train Velocity and Location Tracking Algorithm for a Constant Warning Time System (철도건널목 정시간 제어를 위한 열차속도 및 위치추적방식 개발)

  • Oh, Ju-Taek;Kim, Tae-Kwon;Park, Dong-Joo;Shin, Seong-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.17-28
    • /
    • 2005
  • About 91.1% of Railway-Highway Crossings (RHC) in Korea use a Constant Distance Warning System(CDWS), while about 8.9% use a Constant Warning Time System(CWTS). The CDWS does not recognize speed differences of approaching trains and provides only waiting times to vehicles and pedestrians based on the highest speed of approaching trains. Under the CDWS, therefore, low speed trains provide unnecessary waiting times at crossings which often generates complains to vehicle drivers and pedestrians and may cause wrong decisions to pass the crossings. The objective of this research is to improve the safety of the RHC by developing accurate a CWTS. In this research a train speed and location detection system was developed with ultra sonic detectors. Locations of the detectors was decided based on the highest speed and the minimum warning time of Saemaul of 160 km/h. To validate the algorithms of the newly developed systems the lab tests were conducted. The results show that the train detection system provides accurate locations of trains and the maximum error between real speeds of trains and those of the system was 0.07m/s.

Development of a Time-Based Railway Crossing Control System and Evaluation (철도건널목 정시간 제어방식 개발 밑 효과분석에 관한 연구)

  • Park Dongjoo;Oh Ju-Taek;Lee Sun-Ha;Jung Chun-Hee;Shin Seong-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.145-154
    • /
    • 2005
  • Traffic accidents at highway-rail crossing result in larger social and economic damages than the accidents at the typical highway intersections. The traditional control and warning systems of the highway-rail crossing have limitations in that 1) they do not recognize the differences of the trains' arrival times because they rely on the distance-based control system, rather than the time-based one, and 2) thereby they usually cause longer delays of vehicles and pedestrians at the highway-rail crossings. The objective of this study is to develop a time-based railroad crossing control system which takes into account the speed and expected arrival time of trains. using the spot speeds and acceleration rates of trains measured at three points, the developed system was found to be able to accurately estimate the arrival time of train. VISSIM simulation package was utilized to compare system effect of the developed time-based railroad crossing control system with that of the conventional distance-based one. It was found that the developed time-based railroad crossing control system reduced the average travel time, maximum delay length, average delay time, and average number of stop-experienced vehicles as much as 7.0$\%$, 75.6$\%$, 12.7$\%$, and 60.0$\%$, respectively, compared with those from the conventional distance-based one.

A Study on the Loop Detector System for Real-Time Traffic Adaptive Signal Control (실시간 교통신호제어를 위한 루프 검지기 체계 연구)

  • 이승환;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.59-88
    • /
    • 1996
  • This study has determined optimal type, and location of loop detector to measure accurately traffic condition influenced by traffic variation with real time. Optimal type of loop detector for through vehicle at stop bar was determined by confidences of occupancy period, and nonoccupancy period, and so appropriate detector type for application to real time traffic control system has been decided on special loop detector.

    shows types and winding methods of existing detector (num1) and special detector (num 7,8) determined. It is desired that optimal location of through loop detector should be installed within 50cm of stop bar owing to vehicle behavior. And optimal location of loop detector for left turn vehicle is determined by left turn vehicle behavior on stop bar. In the case of install only one loop, it is desirable that within 20cm of stop bar. Both the special loop (1.8 × 4.0m : num 1.7) and existing loop (1.8 × 1.8m : num1) would be suitable. A location standard aspects, while regarding as economic, existing loop (1.8 × 1.8m : num1) would be suitable. A location of the queue detector and the spillback prevention detector considering the link length, the pedestran crossing is be or not and the estimation range of queue. And if the link length is shorter than 250m, locations of queue detector and spillback protect detector must be considered in the respect of queue management.

  • PDF