• Title/Summary/Keyword: 정상 유동

Search Result 1,131, Processing Time 0.029 seconds

Experimental Study on the Three Dimensional Unsteady Flow in a Counter Rotating Axial Flow Fan (엇회전식 축류팬의 3 차원 비정상 유동에 관한 실험적 연구)

  • Park, Hyun-Soo;Cho, Lee-Sang;Kang, Hyun-Koo;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.822-827
    • /
    • 2003
  • Experiments were done for the three dimensional unsteady flow in a counter rotating axial flow fan under stable operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the $45^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. Swirl velocity, which was generated by the front rotor, was recovered in the form of static pressure rise by the rear rotor except for hub and tip regions.

  • PDF

Steady-state flow analysis of pipe network (배관망 내의 정상상태 유동 해석)

  • 채은미;사종엽
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.281-291
    • /
    • 1999
  • A computer code based on a node equation method has been developed for the analysis of pipe network. Both data structure and object-oriented programming technique are used for pipe and node modelling, in which simplification process is applied to complicated and large pipe network. The semi-direct solver, ILU-CGS, improves greatly both the accuracy and the rate of convergence. The computational result of high-pressure pipe network of city gas in Taegu shows the good agreement with the real data.

  • PDF

사각탱크의 벽면에 설치된 배플 주위 비정상유동의 속도계측에 관한 연구

  • Kim, Gwang-Seon;Lee, Cheol-Hui;O, U-Jun;Choe, Min-Seon;Lee, -GyeongU
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.245-246
    • /
    • 2009
  • 횡요동을 하는 13.5도의 모서리 경사각을 갖는 사각탱크 내에서 발생하는 유체의 슬로싱에 대해 비정상 현상 규명이 가능한 PIV기법을 적용하여 실험적으로 고찰하였다. 내부 액체의 유통현상을 계측한 결과, 0.6Hz와 l.2Hz의 주기를 갖는 실제 운동 상황을 모사한 운동 중의 속도분포를 계측 할 수 있는 기술을 확보하였으며 바닥중앙에 설치된 배플 주위 유동장을 해석하였다.

  • PDF

Investigation of Transonic and Supersonic Flows over an Open Cavity Mounted on Curved Wall (I) - Steady Flow Characteristics - (곡면상에 설치된 열린 공동을 지나는 천음속/초음속 유동에 관한 연구 (I) - 정상 유동의 특성 -)

  • Ye, A Ran;Das, Rajarshi;Kim, Huey Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.231-236
    • /
    • 2015
  • Investigations into cavity flows have been conducted for decades now, most of them being about zero-pressure-gradient flows entering a cavity on a straight wall. However, the flow over curved walls in real-life situations has not been fully investigated. As cavity flows on curved walls exert centrifugal force, these walls are likely to possess different features from straight walls. To verify this possibility, this study investigated cavity flows on curved walls. Using numerical method, the effect of two variables, namely, radius of curvature on a curved wall and inlet Mach number, were investigated for subsonic and supersonic cavity flows. The result demonstrates that the value of the peak pressure generated inside the cavity increases with the decrease in the radius of curvature on a curved wall or an increase in the inlet Mach number. The total pressure loss in the cavity also results in an increase in the cavity drag.

The Effect of Inferior Turbinectomy on Heat/Humidity Transfer Ability of the Nose (하비갑개수술이 비강의 열/습도 전달 특성에 미친 영향)

  • Chung, Kang-Soo;Chang, Ji-Won;Kim, Sung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.419-424
    • /
    • 2012
  • In addition to respiration, the nose performs three other major physiological functions-air-conditioning, filtering, and smelling. On the basis of our experience in experimental investigations of nasal airflows in normal and abnormal nasal cavity models, airflows in the normal model and three artificially deformed models, which simulate the results of surgical treatments (inferior turbinectomy), are investigated by PIV and CFD. The left cavities of all three models are normal, and the right cavities are modified as follows: (1) excision of the head of the inferior turbinate, (2) resection of the lower fifth of the inferior turbinate, and (3) resection of almost the entire inferior turbinate. The use of high-resolution CT data and careful surface rendering of three-dimensional computer models with the help of an ENT doctor provide more sophisticated nasal cavity models. Nasal airflows for both normal and deformed cases are also compared.

A Study on PIV Measurement of Unsteady Flow around Disk caused by Slide Type Valve Quick Closing (슬라이드 밸브 급폐쇄에 따른 디스크 주위 비정상유동의 PIV계측에 관한 연구)

  • Lee, Chul-Jae;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.251-256
    • /
    • 2009
  • In this research, we experimentally studied flow characteristic by applying PIV measuring techniques which could measure the point velocity of all flow field and measuring the unsteady velocity of surrounding disk generated in a short time. Time range of great velocity change following quick closing of the slide valve was within 0.1s and the cycle was presumed to be 0.12s as a result of comparison study between the result of point flow field and of existing pressure change. Also, surrounding disk flow inside the circular pipe was closed from the upper part and flow road was getting narrow and advanced to the lower part incidentally quickly there was a tendency that the size of the flow back velocity to the upper part immeadiately after the closure decreased to 4/120s and increased again. There was flow back velocity component in y/D=0.2 lower part by the influence of flow back to the upper part after complete closure and the vortex flow of 0.2D-size near y/D=0.7, x/D=-0.3 was observed.

  • PDF

ATTITUDE STABILITY OF A SPACECRAFT WITH SLOSH MASS SUBJECT TO PARAMETRIC EXCITATION (계수자극을 받는 유동체를 포함한 위성체의 자세 안정도 해석)

  • Kang, Ja-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.205-216
    • /
    • 2003
  • The attitude motion of a spin-stabilized, upper-stage spacecraft is investigated based on a two-body model, consisting of a symmetric body, representing the spacecraft, and a spherical pendulum, representing the liquid slag pool entrapped in the aft section of the rocket motor. Exact time-varying nonlinear equations are derived and used to eliminate the drawbacks of conventional linear models. To study the stability of the spacecraft's attitude motion, both the spacecraft and pendulum are assumed to be in states of steady spin about the symmetry axis of the spacecraft and the coupled time-varying nonlinear equation of the pendulum is simplified. A quasi-stationary solution to that equation and approximate resonance conditions are determined in terms of the system parameters. The analysis shows that the pendulum is subject to a combination of parametric and external-type excitation by the main body and that energy from the excited pendulum is fed into the main body to develop the coning instability. In this paper, numerical examples are presented to explain the mechanism of the coning angle growth and how angular momenta and disturbance moments are generated.

A new formulation for unsteady heat transfer of oscillatory flow in a circular tube (원관내 왕복유동에서 비정상 열전달 관계식의 공식화)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2953-2964
    • /
    • 1996
  • Heat Transfer with periodic fluctuation of fluid temperature caused by oscillatory flow or compression expansion can be out of phase with balk fluid-wall temperature difference. Newton's law of convection is inadequate to describe this phenomenon. In order to solve this problem the concept of the complex Nusselt number has been introduced by severla researchers. The complex Nusselt number expresses out of phase excellently while the first harmonic is dominant in the variations of both fluid-wall temperature difference and heat flux. However, in the case of oscillatory flow with non-linear wall temperature distribution, the complex Nusselt number is not appropriate to predict the heat transfer phenomena since the higher order harmonic components appear in periodic temperature variation. Analytic solutions to the heat transfer with an sinusoidal well temperature distribution were obtained to investagate the effect of non-linear wall temperature distribution. A new formula considering the thermal boundary layer was suggested based on the solutions. A comparison was also made with the complex Nusselt number. It was verified that the new formula describes well the heat transfer of oscillating flow even if the first harmonic component is not dominant in the fluid-wall temperature difference.

Analysis of a Marine Propeller in Steady Flow by a Higher-Order Boundary Element Method (고차경계요소법을 이용한 정상 유동중의 프로펠러 해석)

  • K.J. Paik;S.B. Suh;H.H. Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.31-40
    • /
    • 2001
  • Low-order panel methods are being used to design marine propellers. Since the potential value over each panel for these methods is assumed to be a constant, the accuracy of prediction is known to be limited. Therefore, a higher order boundary element method(HOBEM) has been studied to enhance the accuracy of prediction. In this paper, a HOBEM representing the body boundary surfaces and physical quantities by a 9-node Lagrangian shape function is employed to analyse the flow around marine propellers in steady potential flow. First, the numerical results for a circular wing with thickness variations are compared with Jordan's linear solution. Then, the computational results of two propellers(DTRC 4119 & DTRC 4842 propeller) are compared with the experimental and numerical results published. The pressure distribution on the surface of the propeller is also compared with experimental data.

  • PDF

Numerical investigation into flow noise source of a convergent-divergent nozzle in high pressure pipe system using wavenumber-frequency analysis (파수-주파수 분석을 통한 고압 배관 내 수축 확장 노즐의 유동 소음원에 대한 수치적 연구)

  • Ku, Garam;Lee, Songjune;Kim, Kuksu;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.314-320
    • /
    • 2017
  • A pressure relief valve is generally used to prevent piping systems from being broken due to high pressure gas flows. However, the sudden pressure drop caused by the pressure relief valve produces high acoustic energy which propagates in the form of compressible acoustic waves in the pipe and sometimes causes severe vibration of the pipe structure, thereby resulting in its failure. In this study, internal aerodynamic noise due to valve flow is estimated for a simple contraction-expansion pipe by combining the LES (Large-Eddy Simulation) technique with the wavenumber-frequency analysis, which allows the decomposition of fluctuating pressure into incompressible hydrodynamic pressure and compressible acoustic pressure. In order to increase the convergence, the steady Reynolds-Averaged Navier-Stokes equations are numerically solved. And then, for the unsteady flow analysis with high accuracy, the unsteady LES is performed with the steady result as the initial value. The wavenumber-frequency analysis is finally performed using the unsteady flow simulation results. The wavenumber-frequency analysis is shown to separate the compressible pressure fluctuation in the flow field from the incompressible one. This result can provide the accurate information for the source causing so-called acoustic-induced-vibration of a piping system.