• Title/Summary/Keyword: 정상상태 운전

Search Result 316, Processing Time 0.025 seconds

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM (Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어)

  • Jeon, Kyoung Yein;Kwak, Ha Yeon;Kyung, Ji Hyun;Yoo, Ahrim;Lee, Tae Won;Lee, Gi Pung;Moon, Kil Ho;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.423-431
    • /
    • 2011
  • Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

Effects of Cu and K Addition on Catalytic Activity for Fe-based Fischer-Tropsch Reaction (Fe계 Fischer-Tropsch 반응에서 촉매활성에 대한 Cu와 K의 첨가 효과)

  • Lee, Chan Yong;Kim, Eui Yong
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Effects of the Cu and K addition and the reduction condition of Fe-based catalysts for Fischer-Tropsch reaction are studied in a continuous flow reactor in this research. The catalysts for the reaction were prepared by homogeneous precipitation followed by incipient wetness impregnation. Physicochemical properties of the $Al_2O_3$ supported Fe-based catalysts are characterized by various methods including X-ray diffraction (XRD), temperature programmed reduction (TPR), and scanning electron microscopy (SEM). Catalytic activities and stabilities of the Fe/Cu/K catalyst are investigated in time-on-stream for an extended reaction time over 216 h. It is found that a reduction of the catalysts using a mixture of CO and $H_2$ can promote their catalytic activities, attributed to the iron carbides formed on the catalysts surface by X-ray diffraction analysis. The addition of Cu induces a fast stabilization of the reaction reducing the time to reach at the steady state by enhancement of catalytic reduction. The addition of K to the catalysts increases the CO conversion, while the physical stability of catalyst decreases with potassium loading up to 5%. The Fe/Cu (5%)/K (1%) catalyst shows an enhanced long term stability for the Fischer-Tropsch reaction under the practical reaction condition, displaying about 15% decrease in the CO conversion after 120 h of the operation.

Measurements of Void Concentration Parameters in the Drift-Flux Model (상대유량 모델내의 기포분포계수 측정에 관한 연구)

  • Yun, B.J.;Park, G.C.;Chung, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.91-101
    • /
    • 1993
  • To predict accurately the thermal hydraulic behavior of light water reactors during normal or abnormal operation, the accurate estimation of the void distribution is required. Up to date, many techniques for predicting void fraction of two-phase flow systems have been suggested. Among these techniques, the drift-flux model is widely used because of its exact calculation ability and simplicity. However, to get more accurate prediction of void fraction using drift-flux model, slip and flow regime effects must be considered more properly In the drift-flux method, these two effects are accounted for by two drift-flux parameters ; $C_{o}$ and (equation omitted). At earlier stage, $C_{o}$ is measured in a circular tube. In this study, $C_{o}$ is experimentally determined by measuring local void fraction and vapor velocity distribution in a rectangular subchannel having 4 heating rods which simulates nuclear subchannels. The measurements are peformed with two-electrical conductivity probes which are known to be adequate for measuring local parameters. The experiments are performed at low flow rate and the system pressure less than 3 atmo spheric pressure. In this experiment, (equation omitted), is not measured, but quoted from well-known empirical correlation to formulate $C_{o}$. Finally, $C_{o}$ is expressed as a function of channel averaged void fraction. fraction.

  • PDF

Effect of Ammonia Nitrogen Loading Rate on the Anaerobic Digestion of Slurry-typed Swine Wastewater (슬러리형 돈사폐수의 혐기성 소화시 암모니아 부하의 영향)

  • Won, Chul-Hee;Kwon, Jay-Hyouk;Rim, Jay-Myoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • This research examined the effect of ammonia nitrogen loading rate(NVLR) on the anaerobic digestion of slurry-typed swine wastewater. The anaerobic reactor was used an upflow anaerobic sludge blanket (UASB) process. This UASB reactor was operated at a NVLR of $0.02{\sim}0.96kg{NH_4}^+-N/m^3/day$. The methane content showed the range of 73.3~77.9% during the steady state period. Free ammonia(FA) concentration increased over inhibition level as pH increase from 7.3 to 8.2. However, in consideration of methane content, methane producing bacteria (MPB) inhibition by FA and total ammonia(TA) was not observed. A stepwise increase of the NVLR resulted in a deterioration in the COD removal rate in UASB reactor. The COD removal rate were 60% for NVLR up to $0.55kg{NH_4}^+-N/m^3/day$. As the NVLR increased from 0.09 to $0.96kg{NH_4}^+-N/m^3/day$, the biogas production rate varied from 3.71 to 9.14L/d and the methane conversion rate of the COD varied from 0.32 to $0.20m^3CH_4/kg$ COD removed. Consequently, in considerations of FA concentration, COD removal rate, and $CH_4$ production rate, the UASB reactor must be operated to lower than $0.40kg{NH_4}^+-N/m^3/day$ of NVLR.

Analysis of Loss of Offsite Power Transient Using RELAP5/MODl/NSC; I: KNU1 Plant Transient Simulation (RELA5/MOD1/NSC를 이용한 원자력 1호기 외부전원상실사고해석 - I. 실제사고해석)

  • Kim, Hho-Jung;Chung, Bub-Dong;Lee, Young-Jin;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.97-106
    • /
    • 1986
  • System thermal-hydraulic parameters and simulated, using the best-estimate system code(RELAPS/MODl/NSC), based upon the sequence of events for the KNU1 (Korea Nuclear Unit 1) loss of offsite power transient at 77.5% power which occurred on June 9,1981. The results are compared with the actual plant transient data and show good agreements. After the flow coastdown following the trips of both reactor coolant pumps, the establishment of natural circulation by the temperature difference between the hot and the cold legs is confirmed. The calculated reactor coolant flowrate closely approximates the plant data indicating the validity of relevant thermal-hydraulic models in the RELAP5/MOD1/NSC. Results also show that the sufficient heat removal capability is secured by the appropriate supply of the auxiliary feedwater without the operation of S/G PORVs. In addition, a scenario accident at full power, based upon the same sequence of events described above, is also analysed and the results confirmed that the safety of KNU1 is secured by the appropriate operation of the S/G PORVs coupled with the supply of auxiliary feedwater which ensures sufficient heat removal capability. The characteristics of the non-safety related components such as the turbine stop valve closing time, S/G PORV settings etc. are recognized to be important in the transient analyses on a bestestimate basis.

  • PDF

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Solid Flow Rate and Gas Bypassing with Operating Variables of J-valve in Multistage Annular Type Fluidized Beds (다단 환원형 유동층에서 J-valve의 운전변수에 따른 고체 흐름량 및 기체 우회)

  • Hong, Yoon-Seok;Kang, Gyung-Soo;Park, Joo-Sik;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Hydrodynamic characteristics in multistage annular type fluidized bed (riser: $0.01{\times}0.025{\times}2.8m^3$, J-valve: $0.009{\times}0.015m^2$)were investigated. Glass beads ($d_p=101{\mu}m$, ${\rho}_b=1,590kg/m^3$, $U_{mf}=1.25{\times}10^{-2}m/s$, Geldart classification B) was used as a bed material. Accumulated weight by the electronic balance was measured to determine the solid flow rate in batch-type. In circulation condition, we measured the accumulated weight of particle transported from riser. At the steady state condition, solid circulation rate was calculated from time interval of the heated bed material passing between two thermocouples. Solid flow rate increased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 2.2 to 23.4 kg/s. However, mean residence time decreased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 1,438 to 440 s. The solid holdup in the riser was determined by measuring pressure differences according to the riser height. These results showed a similar trend to that of simple exponential decay type except for the top section of the riser. To verify the gas bypassing from top bubbling beds to middle bubbling beds, $CO_2$ gas was injected by tracer gas in constant ratio, and then was measured $CO_2$ concentration in outlet gas by gas chromatography. Gas bypassing occurred below 2.6% which is negligible value.

A Study on Removal of T-N by Loess Ball Using Synthetic Wastewater (Loess ball에 의한 총질소 제거에 관한 연구)

  • Shin Sung-Euy;Lee Choon-Boem;Cha Wol-Suk
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.590-594
    • /
    • 2005
  • In this study, the wastewater treatment was conducted to evaluate the removal efficiency of total nitrogen from synthetic wastewater in the F-STEP PROCESS $(anaerobic{\rightarrow}\;oxic\;{\rightarrow}\;anoxic)$ with loess ball as support metrics. The average removal efficiencies of total nitrogen and ammonia nitrogen were $83.0\%\;and\;84.4\%$, respectively. The average nitrification efficiency at the oxic area was $60.9\%$ in the pH range of effluent water between 4.8 and 6.0. On the other hand, in the case of pH range of effluent water between 6.5 and 7.5, the denitrification efficiency at the anoxic area was $96.3\%$. The average concentration of COD was 12.8 ppm and the removal efficiency of COD in the F-STEP PROCESS were $96.3\%$. In the case of SS, the average concentration was $7.0\%$ at the effluent.

Thermodynamic Evaluations of Cesium Capturing Reaction in Ceramic Microcell UO2 Pellet for Accident-tolerant Fuel (사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가)

  • Jeon, Sang-Chae;Kim, Keon Sik;Kim, Dong-Joo;Kim, Dong Seok;Kim, Jong Hun;Yoon, Jihae;Yang, Jae Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have $UO_2$ grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the $UO_2$ pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (${\Delta}G_{Cs}$) and oxygen potential (${\Delta}G_{O_2}$) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture.

A Study on Modeling of Leakage Current in ESS Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 ESS의 누설전류 모델링에 관한 연구)

  • Kim, Ji-Myung;Tae, Dong-Hyun;Lee, Il-Moo;Lim, Geon-Pyo;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.810-818
    • /
    • 2021
  • A leakage current of ESS is classified mainly by the occurrence from a PCS(Power Conditioning System) section and an unbalanced grid current. The reason for the leakage current from the PCS section is a voltage change by IGBT (Insulated Gate Bipolar Transistor) switching and stray capacitance between the IGBT and heatsink. The leakage current caused by the grid unbalanced current flows to the ESS through the neutral line of grid-connected transformer for the ESS with a three limb iron type of Yg-wire connection. This paper proposes a mechanism for the occurrence of leakage current caused by stray capacitance, which is calculated using the heatsink formula, from the aspect of the PCS section and grid unbalance current. Based on the proposed mechanisms, this study presents the modeling of the leakage current occurrence using PSCAD/EMTDC S/W and evaluates the characteristics of leakage currents from the PCS section and grid unbalanced current. From the simulation result, the leakage current has a large influence on the battery side by confirming that the leakage current from the PCS is increased from 7[mA] to 34[mA], and the leakage current from an unbalanced load to battery housing is increased from 3.96[mA] to 10.76[mA] according to the resistance of the housings and the magnitude of the ground resistance.