• Title/Summary/Keyword: 정보 모델

Search Result 23,596, Processing Time 0.052 seconds

Quantifying forest resource change on the Korean Peninsula using satellite imagery and forest growth models (위성영상과 산림생장모형을 활용한 한반도 산림자원 변화 정량화)

  • Moonil Kim;Taejin Park
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.193-206
    • /
    • 2024
  • This study aimed to quantify changes in forest cover and carbon storage of Korean Peninsular during the last two decades by integrating field measurement, satellite remote sensing, and modeling approaches. Our analysis based on 30-m Landsat data revealed that the forested area in Korean Peninsular had diminished significantly by 478,334 ha during the period of 2000-2019, with South Korea and North Korea contributing 51.3% (245,725 ha) and 48.6% (232,610 ha) of the total change, respectively. This comparable pattern of forest loss in both South Korea and North Korea was likely due to reduced forest deforestation and degradation in North Korea and active forest management activity in South Korea. Time series of above ground biomass (AGB) in the Korean Peninsula showed that South and North Korean forests increased their total AGB by 146.4Tg C (AGB at 2020=357.9Tg C) and 140.3Tg C (AGB at 2020=417.4Tg C), respectively, during the last two decades. This could be translated into net AGB increases in South and North Korean forests from 34.8 and 29.4 Mg C ha-1 C to 58.9(+24.1) and 44.2(+14.8) Mg C ha-1, respectively. It indicates that South Korean forests are more productive during the study period. Thus, they have sequestered more carbon. Our approaches and results can provide useful information for quantifying national scale forest cover and carbon dynamics. Our results can be utilized for supporting forest restoration planning in North Korea

Trends identification of species distribution modeling study in Korea using text-mining technique (텍스트마이닝을 활용한 종분포모형의 국내 연구 동향 파악)

  • Dong-Joo Kim;Yong Sung Kwon;Na-Yeon Han;Do-Hun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.413-426
    • /
    • 2023
  • Species distribution model (SDM) is used to preserve biodiversity and climate change impact. To evaluate biodiversity, various studies are being conducted to utilize and apply SDM. However, there is insufficient research to provide useful information by identifying the current status and recent trends of SDM research and discussing implications for future research. This study analyzed the trends and flow of academic papers, in the use of SDM, published in academic journals in South Korea and provides basic information that can be used for related research in the future. The current state and trends of SDM research were presented using philological methods and text-mining. The papers on SDM have been published 148 times between 1998 and 2023 with 115 (77.7%) papers published since 2015. MaxEnt model was the most widely used, and plant was the main target species. Most of the publications were related to species distribution and evaluation, and climate change. In text mining, the term 'Climate change' emerged as the most frequent keyword and most studies seem to consider biodiversity changes caused by climate change as a topic. In the future, the use of SDM requires several considerations such as selecting the models that are most suitable for various conditions, ensemble models, development of quantitative input variables, and improving the collection system of field survey data. Promoting these methods could help SDM serve as valuable scientific tools for addressing national policy issues like biodiversity conservation and climate change.

Comparative Study of User Reactions in OTT Service Platforms Using Text Mining (텍스트 마이닝을 활용한 OTT 서비스 플랫폼별 사용자 반응 비교 연구)

  • Soonchan Kwon;Jieun Kim;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.25 no.3
    • /
    • pp.43-54
    • /
    • 2024
  • This study employs text mining techniques to compare user responses across various Over-The-Top (OTT) service platforms. The primary objective of the research is to understand user satisfaction with OTT service platforms and contribute to the formulation of more effective review strategies. The key questions addressed in this study involve identifying prominent topics and keywords in user reviews of different OTT services and comprehending platform-specific user reactions. TF-IDF is utilized to extract significant words from positive and negative reviews, while BERTopic, an advanced topic modeling technique, is employed for a more nuanced and comprehensive analysis of intricate user reviews. The results from TF-IDF analysis reveal that positive app reviews exhibit a high frequency of content-related words, whereas negative reviews display a high frequency of words associated with potential issues during app usage. Through the utilization of BERTopic, we were able to extract keywords related to content diversity, app performance components, payment, and compatibility, by associating them with content attributes. This enabled us to verify that the distinguishing attributes of the platforms vary among themselves. The findings of this study offer significant insights into user behavior and preferences, which OTT service providers can leverage to improve user experience and satisfaction. We also anticipate that researchers exploring deep learning models will find our study results valuable for conducting analyses on user review text data.

Application of Geo-Segment Anything Model (SAM) Scheme to Water Body Segmentation: An Experiment Study Using CAS500-1 Images (수체 추출을 위한 Geo-SAM 기법의 응용: 국토위성영상 적용 실험)

  • Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.343-350
    • /
    • 2024
  • Since the release of Meta's Segment Anything Model (SAM), a large-scale vision transformer generation model with rapid image segmentation capabilities, several studies have been conducted to apply this technology in various fields. In this study, we aimed to investigate the applicability of SAM for water bodies detection and extraction using the QGIS Geo-SAM plugin, which enables the use of SAM with satellite imagery. The experimental data consisted of Compact Advanced Satellite 500 (CAS500)-1 images. The results obtained by applying SAM to these data were compared with manually digitized water objects, Open Street Map (OSM), and water body data from the National Geographic Information Institute (NGII)-based hydrological digital map. The mean Intersection over Union (mIoU) calculated for all features extracted using SAM and these three-comparison data were 0.7490, 0.5905, and 0.4921, respectively. For features commonly appeared or extracted in all datasets, the results were 0.9189, 0.8779, and 0.7715, respectively. Based on analysis of the spatial consistency between SAM results and other comparison data, SAM showed limitations in detecting small-scale or poorly defined streams but provided meaningful segmentation results for water body classification.

Real-Time 3D Volume Deformation and Visualization by Integrating NeRF, PBD, and Parallel Resampling (NeRF, PBD 및 병렬 리샘플링을 결합한 실시간 3D 볼륨 변형체 시각화)

  • Sangmin Kwon;Sojin Jeon;Juni Park;Dasol Kim;Heewon Kye
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 2024
  • Research combining deep learning-based models and physical simulations is making important advances in the medical field. This extracts the necessary information from medical image data and enables fast and accurate prediction of deformation of the skeleton and soft tissue based on physical laws. This study proposes a system that integrates Neural Radiance Fields (NeRF), Position-Based Dynamics (PBD), and Parallel Resampling to generate 3D volume data, and deform and visualize them in real-time. NeRF uses 2D images and camera coordinates to produce high-resolution 3D volume data, while PBD enables real-time deformation and interaction through physics-based simulation. Parallel Resampling improves rendering efficiency by dividing the volume into tetrahedral meshes and utilizing GPU parallel processing. This system renders the deformed volume data using ray casting, leveraging GPU parallel processing for fast real-time visualization. Experimental results show that this system can generate and deform 3D data without expensive equipment, demonstrating potential applications in engineering, education, and medicine.

Analyzing Changes in Spatial Extent of Influences from a Resource Recovery Facility in the Aspect of Housing Prices - A Case Study on the Nowon Facility in Seoul using Hedonic Price Model - (주택가격에 대한 자원회수시설 영향권 변화에 대한 연구 - 헤도닉 가격 모형을 이용한 노원자원회수시설에 대한 사례 -)

  • Kim, Hyunkyung;Park, Kyung Nan;Sohn, Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.3
    • /
    • pp.43-59
    • /
    • 2024
  • This study focuses on identifying the impacts of the Nowon resource recovery facility in Seoul, Korea, on the real transaction price of apartments in the neighboring areas between 2006 and 2022, and the spatial extent of the impact. Resource recovery facilities, which generate electricity and heating energy while disposing of waste, are typical unwanted facilities that have a negative impact on neighboring property prices. As direct landfilling of household waste is banned in Seoul from 2026 and nationwide from 2030, the demand for the expansion of waste incineration facilities, including resource recovery facilities, is expected to increase rapidly. In addition, social disputes related to the decline in neighboring property prices are expected to increase. This study analyses the impact of the Nowon resource recovery facility on surrounding apartment prices over a 17-year period since 2006 using hedonic price models for apartments, and finds that the Nowon resource recovery facility consistently has a negative impact on nearby apartment prices, the spatial extent of the impact is at least 1,000 meters from the facility, and the intensity of the negative impact weakens as the distance from the facility increases. The results of this study differ from recent studies finding that the spatial extent of the impact of resource recovery facilities in Seoul on surrounding property prices is limited within 500~600 meters, suggesting that a broader approach is needed to systematically manage social conflicts that are expected to increase with the growing social demand for resource recovery facilities.

The Affective Impact of Citizen Archival Activities: Toward a Conceptual and Analytical Framework (시민 기록활동의 정동적 영향: 개념과 분석 방안을 중심으로)

  • Eunhee Bae;Moon-Won Seol
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.3
    • /
    • pp.65-84
    • /
    • 2024
  • Since the 2000s, there has been growing interest in community archival research in the West, and in Korea, projects that support citizen or resident participation in archival activities have also been increasing. With the role of community members as producers of records having gained importance in Korea, it has become necessary to examine the affective approach currently discussed in archival studies, focusing on the impact of "archival activities" on individual citizens. Unlike emotion, which is a personal and subjective experience, affect is characterized by "a sense shared based on relationships" and involves the concept of transformation of being (affection). This study aims to explore a method for analyzing the "affective impact applicable to citizen archival activities," an area that has not been previously addressed. To this end, the study reviews the meaning and concept of citizen archival activities and their development in Korea, focusing on the UCLA study (2018) and Brophy's (2005) approach to analyzing the affective impact of community archives to explore methodologies. It also explores the integration of the concept of "partyhood" to better reflect the characteristics of citizen archival activities. Based on these findings, this study proposes a conceptual model for analyzing the affective impact of citizen archival activities on recorders in Korea.

Simulink-based xPC Target Monitoring/Logging Tool Development (시뮬링크 기반의 실시간 모니터링 및 로깅 도구 개발)

  • Yoonbin Hong;Minji Park;Donghyeok An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.339-350
    • /
    • 2024
  • In construction sites, the engine of heavy machinery is tested by practitioners who manually adjust engine settings and directly measure the output. This process has consistently raised concerns regarding time costs and the risk of incidents. To address these issues, simulations of heavy equipment are conducted using Speedgoat and the Simulink API. However, due to the varying compatibility of different versions of Speedgoat hardware and Simulink API, engineers need to have a comprehensive understanding of various Simulink APIs. It is practically challenging for engineers, who must have a deep understanding of heavy equipment structures, to also possess programming skills including API usage. Thus, this paper proposes a tool that allows inputting configuration values for heavy equipment simulation and visually outputs and logs the simulation results. The proposed tool provides functionalities to deliver configuration values, such as engine settings of heavy equipment, to the simulator model and to monitor and log the resulting simulation outputs. These functionalities have been validated through scenarios. By using the developed tool, engineers are expected to reduce the burden of learning Simulink API and focus more on understanding the structure of heavy equipment. Additionally, it is anticipated that this tool will provide a more efficient and safer working environment for heavy equipment testing on construction sites.

A Study on the Impact of Noise on YOLO-based Object Detection in Autonomous Driving Environments

  • Ra Yeong Kim;Hyun-Jong Cha;Ah Reum Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.69-75
    • /
    • 2024
  • Noise caused by adverse weather conditions in data collected during autonomous driving can lead to object recognition errors, potentially resulting in critical accidents. While this risk is widely acknowledged, there is a lack of research that quantitatively and systematically analyzes it. Therefore, this study aims to examine and quantify the extent to which noise affects object detection in autonomous driving environments. To this end, we utilized the YOLO v5 model trained on unprocessed datasets. The test data were divided into noise ratios of 0% (Original), 20%, 40%, 60%, and 80%, and the detection results were evaluated by constructing a Confusion Matrix. Experimental results show that as the noise ratio increases, the True Positive (TP) rate decreases, and the F1-score also significantly drops across all noise levels, specifically from 0.69 to 0.47, 0.29, 0.18, and 0.14. These findings are expected to contribute to enhancing the stability of autonomous driving technology. Future research will focus on collecting real datasets that include naturally occurring noise and developing more effective noise removal techniques.

New Insights on Mobile Location-based Services(LBS): Leading Factors to the Use of Services and Privacy Paradox (모바일 위치기반서비스(LBS) 관련한 새로운 견해: 서비스사용으로 이끄는 요인들과 사생활염려의 모순)

  • Cheon, Eunyoung;Park, Yong-Tae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.33-56
    • /
    • 2017
  • As Internet usage is becoming more common worldwide and smartphone become necessity in daily life, technologies and applications related to mobile Internet are developing rapidly. The results of the Internet usage patterns of consumers around the world imply that there are many potential new business opportunities for mobile Internet technologies and applications. The location-based service (LBS) is a service based on the location information of the mobile device. LBS has recently gotten much attention among many mobile applications and various LBSs are rapidly developing in numerous categories. However, even with the development of LBS related technologies and services, there is still a lack of empirical research on the intention to use LBS. The application of previous researches is limited because they focused on the effect of one particular factor and had not shown the direct relationship on the intention to use LBS. Therefore, this study presents a research model of factors that affect the intention to use and actual use of LBS whose market is expected to grow rapidly, and tested it by conducting a questionnaire survey of 330 users. The results of data analysis showed that service customization, service quality, and personal innovativeness have a positive effect on the intention to use LBS and the intention to use LBS has a positive effect on the actual use of LBS. These results implies that LBS providers can enhance the user's intention to use LBS by offering service customization through the provision of various LBSs based on users' needs, improving information service qualities such as accuracy, timeliness, sensitivity, and reliability, and encouraging personal innovativeness. However, privacy concerns in the context of LBS are not significantly affected by service customization and personal innovativeness and privacy concerns do not significantly affect the intention to use LBS. In fact, the information related to users' location collected by LBS is less sensitive when compared with the information that is used to perform financial transactions. Therefore, such outcomes on privacy concern are revealed. In addition, the advantages of using LBS are more important than the sensitivity of privacy protection to the users who use LBS than to the users who use information systems such as electronic commerce that involves financial transactions. Therefore, LBS are recommended to be treated differently from other information systems. This study is significant in the theoretical point of contribution that it proposed factors affecting the intention to use LBS in a multi-faceted perspective, proved the proposed research model empirically, brought new insights on LBS, and broadens understanding of the intention to use and actual use of LBS. Also, the empirical results of the customization of LBS affecting the user's intention to use the LBS suggest that the provision of customized LBS services based on the usage data analysis through utilizing technologies such as artificial intelligence can enhance the user's intention to use. In a practical point of view, the results of this study are expected to help LBS providers to develop a competitive strategy for responding to LBS users effectively and lead to the LBS market grows. We expect that there will be differences in using LBSs depending on some factors such as types of LBS, whether it is free of charge or not, privacy policies related to LBS, the levels of reliability related application and technology, the frequency of use, etc. Therefore, if we can make comparative studies with those factors, it will contribute to the development of the research areas of LBS. We hope this study can inspire many researchers and initiate many great researches in LBS fields.