• Title/Summary/Keyword: 정보적 역할

Search Result 8,067, Processing Time 0.038 seconds

Analyzing Self-Introduction Letter of Freshmen at Korea National College of Agricultural and Fisheries by Using Semantic Network Analysis : Based on TF-IDF Analysis (언어네트워크분석을 활용한 한국농수산대학 신입생 자기소개서 분석 - TF-IDF 분석을 기초로 -)

  • Joo, J.S.;Lee, S.Y.;Kim, J.S.;Kim, S.H.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.89-104
    • /
    • 2021
  • Based on the TF-IDF weighted value that evaluates the importance of words that play a key role, the semantic network analysis(SNA) was conducted on the self-introduction letter of freshman at Korea National College of Agriculture and Fisheries(KNCAF) in 2020. The top three words calculated by TF-IDF weights were agriculture, mathematics, study (Q. 1), clubs, plants, friends (Q. 2), friends, clubs, opinions, (Q. 3), mushrooms, insects, and fathers (Q. 4). In the relationship between words, the words with high betweenness centrality are reason, high school, attending (Q. 1), garbage, high school, school (Q. 2), importance, misunderstanding, completion (Q.3), processing, feed, and farmhouse (Q. 4). The words with high degree centrality are high school, inquiry, grades (Q. 1), garbage, cleanup, class time (Q. 2), opinion, meetings, volunteer activities (Q.3), processing, space, and practice (Q. 4). The combination of words with high frequency of simultaneous appearances, that is, high correlation, appeared as 'certification - acquisition', 'problem - solution', 'science - life', and 'misunderstanding - concession'. In cluster analysis, the number of clusters obtained by the height of cluster dendrogram was 2(Q.1), 4(Q.2, 4) and 5(Q. 3). At this time, the cohesion in Cluster was high and the heterogeneity between Clusters was clearly shown.

A Study on the Success Factors of Co-Founding Start-up by Step: Focusing on the Case of Opportunity-type Start-up (공동창업의 단계별 성공요인에 관한 연구: 기회형 창업기업 사례를 중심으로)

  • Yun, Seong Man;Sung, Chang Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.141-158
    • /
    • 2023
  • From the perspective of an entrepreneur, one of the most important factors for understanding the inherent limitations of a startup, reducing the risk of failure, and succeeding is the composition of the talent, that is, the founding team. Therefore, a common concern experienced by entrepreneurs in the pre-entrepreneurship stage or the early stage of startup is the choice between independent startups and co-founding start-up. Nonetheless, in Korea, the share of independent entrepreneurship is significantly higher than that of co-founding start-up. On the other hand, focusing on the fact that many successful global innovative companies are in the form of co-founding start-up, the success factors of co-founding start-up were examined. Most of the related preceding studies are studies that identify the capabilities and characteristics of individual entrepreneurs as factors influencing the survival and success of entrepreneurship, and there is a lack of research on partnerships, that is, co-founding start-up, which are common in the field of entrepreneurship ecosystems. Therefore, this study attempted a multi-case study through in-depth interviews, collection of relevant data, analysis of contextual information, and consideration of previous studies targeting co-founders of domestic startups that succeeded in opportunistic startups. Through this, a model for deriving the phased characteristics and key success factors of co-founding start-up was proposed. As a result of the study, the key element of the preliminary start-up stage was 'opportunity', and the success factors were 'opportunity recognition through entrepreneur's experience' and 'idea development'. The key element in the early stages of start-up is "start-up team," and the success factor is "trust and complement of start-up team," and synergy is shown when "diversity and homogeneity of start-up team" are harmonized. In addition, conflicts between co-founders may occur in the early stages of start-ups, which has a large impact on the survival of start-ups. The conflict between the start-up team could be overcome through constant "mutual understanding and respect through communication" and "clear division of work and role sharing." It was confirmed that the core element of the start-up growth stage was 'resources', and 'securing excellent talent' and 'raising external funds' were important factors for success. These results are expected to overcome the limitations of start-up companies, such as limited resources, lack of experience, and risk of failure, in entrepreneurship studies, and prospective entrepreneurs preparing for a start-up in a situation where the form of co-founding start-up is attracting attention as one of the alternatives to increase the success rate. It has implications for various stakeholders in the entrepreneurial ecosystem.

  • PDF

The Impact of Utilizing Online Outsourcing in Startups on Member Organizational Commitment and Job Satisfaction (스타트업의 온라인 아웃소싱 활용이 구성원 조직몰입과 직무만족에 미치는 영향에 관한 연구)

  • Kim, Joonhak;Park, Jae-Whan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.3
    • /
    • pp.139-153
    • /
    • 2024
  • The importance of sustainable growth and cost reduction has increased globally, leading to the expansion of outsourcing by companies. Additionally, the spread of the platform economy has brought changes in the way we work, and the online outsourcing market, where tasks are mediated through platforms, is growing. Academically, while research on general outsourcing is actively conducted, studies on online outsourcing are relatively insufficient compared to its actual utilization. This study aims to analyze the factors and performance factors of online outsourcing utilization by startups, to identify the effects and concerns of using online outsourcing from multiple perspectives, and to suggest the roles of various stakeholders for effective utilization and industry development. For the research, a survey was conducted with 281 employees of startups who have experience in using online outsourcing, and the main findings are as follows. First, the enhancement of efficiency, profitability, and innovation through the use of online outsourcing positively affects organizational commitment and job satisfaction of startup members. Especially, the improvement of efficiency due to the use of online outsourcing has a significant effect on enhancing job satisfaction. Second, concerns about the burden of online outsourcing fees or uncertain outcomes negatively affect organizational commitment and job satisfaction. Third, there are perceptual differences in the motivations and performance regarding the utilization of online outsourcing depending on the job position. Practitioners perceive that the use of online outsourcing increases organizational commitment, whereas managers have relatively higher concerns about the uncertainty of outsourced task outcomes and information security. Through this study, the possibility that human resource shortages and employee management issues in startups can be improved through online outsourcing was confirmed. By verifying the influence of various factors of online outsourcing utilization, this study also provides meaningful implications for establishing business strategies for online outsourcing intermediary platform companies and for formulating startup support policies by government and other startup support organizations.

  • PDF

Implementation Strategy for the Elderly Care Solution Based on Usage Log Analysis: Focusing on the Case of Hyodol Product (사용자 로그 분석에 기반한 노인 돌봄 솔루션 구축 전략: 효돌 제품의 사례를 중심으로)

  • Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.117-140
    • /
    • 2019
  • As the aging phenomenon accelerates and various social problems related to the elderly of the vulnerable are raised, the need for effective elderly care solutions to protect the health and safety of the elderly generation is growing. Recently, more and more people are using Smart Toys equipped with ICT technology for care for elderly. In particular, log data collected through smart toys is highly valuable to be used as a quantitative and objective indicator in areas such as policy-making and service planning. However, research related to smart toys is limited, such as the development of smart toys and the validation of smart toy effectiveness. In other words, there is a dearth of research to derive insights based on log data collected through smart toys and to use them for decision making. This study will analyze log data collected from smart toy and derive effective insights to improve the quality of life for elderly users. Specifically, the user profiling-based analysis and elicitation of a change in quality of life mechanism based on behavior were performed. First, in the user profiling analysis, two important dimensions of classifying the type of elderly group from five factors of elderly user's living management were derived: 'Routine Activities' and 'Work-out Activities'. Based on the dimensions derived, a hierarchical cluster analysis and K-Means clustering were performed to classify the entire elderly user into three groups. Through a profiling analysis, the demographic characteristics of each group of elderlies and the behavior of using smart toy were identified. Second, stepwise regression was performed in eliciting the mechanism of change in quality of life. The effects of interaction, content usage, and indoor activity have been identified on the improvement of depression and lifestyle for the elderly. In addition, it identified the role of user performance evaluation and satisfaction with smart toy as a parameter that mediated the relationship between usage behavior and quality of life change. Specific mechanisms are as follows. First, the interaction between smart toy and elderly was found to have an effect of improving the depression by mediating attitudes to smart toy. The 'Satisfaction toward Smart Toy,' a variable that affects the improvement of the elderly's depression, changes how users evaluate smart toy performance. At this time, it has been identified that it is the interaction with smart toy that has a positive effect on smart toy These results can be interpreted as an elderly with a desire to meet emotional stability interact actively with smart toy, and a positive assessment of smart toy, greatly appreciating the effectiveness of smart toy. Second, the content usage has been confirmed to have a direct effect on improving lifestyle without going through other variables. Elderly who use a lot of the content provided by smart toy have improved their lifestyle. However, this effect has occurred regardless of the attitude the user has toward smart toy. Third, log data show that a high degree of indoor activity improves both the lifestyle and depression of the elderly. The more indoor activity, the better the lifestyle of the elderly, and these effects occur regardless of the user's attitude toward smart toy. In addition, elderly with a high degree of indoor activity are satisfied with smart toys, which cause improvement in the elderly's depression. However, it can be interpreted that elderly who prefer outdoor activities than indoor activities, or those who are less active due to health problems, are hard to satisfied with smart toys, and are not able to get the effects of improving depression. In summary, based on the activities of the elderly, three groups of elderly were identified and the important characteristics of each type were identified. In addition, this study sought to identify the mechanism by which the behavior of the elderly on smart toy affects the lives of the actual elderly, and to derive user needs and insights.

Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy (인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별)

  • Lee, Jae-Sung;Lee, Dong-Soo;Kim, Seok-Ki;Park, Kwang-Suk;Lee, Sang-Kun;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • Purpose: We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). Materials and Methods: We studied brain F-18-FDG PET images of 113 epilepsy patients sugically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptrons (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 51 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. Results: The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). Conclusion: We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

A Development of Kolb's Learning Style Based Team Organization Support System (Kolb의 학습양식에 기반 한 팀 조직 지원 시스템 개발)

  • Park, Su-Hong;Jung, Ju-Young;Hong, Jin-Yong;Kim, Seong-Ok;Ryu, Young-Ho;Kang, Eun-Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.12 no.1
    • /
    • pp.9-22
    • /
    • 2008
  • The purpose of this research is to develop a prototype of the support system in order for team building associated with web-based project learning having applied Kolb's learning style. To accomplish this purpose, the following research tasks were performed. First, core idea in order to embody the system's value, key activities, tools that will support pertinent activities and the strategy so as to develop guidelines, etc. were devised and prepared. Second, a system was designed on the basis of structural model of teaching design, then after, interface was developed. The core factors in this system are inspection of learning style, organizing a team and team building. Above all, it is required to make learners know about learning environments, of which they are in favor, and also its distinctive features through inspection of learning style, and then focusing on learning style, a team should be organized insomuch as to accommodate a variety of learning styles as much as possible. For the purpose of team building, after learning style of each constituent member of the team has been made known, then the roles will be divided among the constituent members of the team so as to suit their individual characteristics referring to each of their learning styles that have been exposed. To verify the value of this system developed and efficiency thereof, a focus group interview was conducted. The focus group consisted of professionals, all from related fields. After the interview, the points required to make further improvements were elicited and taken care of by follow-up actions as needed. And having reflected such improvements made, the final system was developed. With this newly developed system, learners can get the results of inspection of learning style so quickly by performing inspection any time any where, and based on the results from such inspection, a team comprising dissimilar constituents who exhibit a variety of different propensities will be automatically organized. Thus, this system may be used not only for web-based project learning having unspecified persons elected as constituents, but in the offline space also.

  • PDF

An Analysis of the Roles of Experience in Information System Continuance (정보시스템의 지속적 사용에서 경험의 역할에 대한 분석)

  • Lee, Woong-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.4
    • /
    • pp.45-62
    • /
    • 2011
  • The notion of information systems (IS) continuance has recently emerged as one of the most important research issues in the field of IS. A great deal of research has been conducted thus far on the basis of theories adapted from various disciplines including consumer behaviors and social psychology, in addition to theories regarding information technology (IT) acceptance. This previous body of knowledge provides a robust research framework that can already account for the determination of IS continuance; however, this research points to other, thus-far-unelucidated determinant factors such as habit, which were not included in traditional IT acceptance frameworks, and also re-emphasizes the importance of emotion-related constructs such as satisfaction in addition to conscious intention with rational beliefs such as usefulness. Experiences should also be considered one of the most important factors determining the characteristics of information system (IS) continuance and the features distinct from those determining IS acceptance, because more experienced users may have more opportunities for IS use, which would allow them more frequent use than would be available to less experienced or non-experienced users. Interestingly, experience has dual features that may contradictorily influence IS use. On one hand, attitudes predicated on direct experience have been shown to predict behavior better than attitudes from indirect experience or without experience; as more information is available, direct experience may render IS use a more salient behavior, and may also make IS use more accessible via memory. Therefore, experience may serve to intensify the relationship between IS use and conscious intention with evaluations, On the other hand, experience may culminate in the formation of habits: greater experience may also imply more frequent performance of the behavior, which may lead to the formation of habits, Hence, like experience, users' activation of an IS may be more dependent on habit-that is, unconscious automatic use without deliberation regarding the IS-and less dependent on conscious intentions, Furthermore, experiences can provide basic information necessary for satisfaction with the use of a specific IS, thus spurring the formation of both conscious intentions and unconscious habits, Whereas IT adoption Is a one-time decision, IS continuance may be a series of users' decisions and evaluations based on satisfaction with IS use. Moreover. habits also cannot be formed without satisfaction, even when a behavior is carried out repeatedly. Thus, experiences also play a critical role in satisfaction, as satisfaction is the consequence of direct experiences of actual behaviors. In particular, emotional experiences such as enjoyment can become as influential on IS use as are utilitarian experiences such as usefulness; this is especially true in light of the modern increase in membership-based hedonic systems - including online games, web-based social network services (SNS), blogs, and portals-all of which attempt to provide users with self-fulfilling value. Therefore, in order to understand more clearly the role of experiences in IS continuance, analysis must be conducted under a research framework that includes intentions, habits, and satisfaction, as experience may not only have duration-based moderating effects on the relationship between both intention and habit and the activation of IS use, but may also have content-based positive effects on satisfaction. This is consistent with the basic assumptions regarding the determining factors in IS continuance as suggested by Oritz de Guinea and Markus: consciousness, emotion, and habit. The principal objective of this study was to explore and assess the effects of experiences in IS continuance, with special consideration given to conscious intentions and unconscious habits, as well as satisfaction. IN service of this goal, along with a review of the relevant literature regarding the effects of experiences and habit on continuous IS use, this study suggested a research model that represents the roles of experience: its moderating role in the relationships of IS continuance with both conscious intention and unconscious habit, and its antecedent role in the development of satisfaction. For the validation of this research model. Korean university student users of 'Cyworld', one of the most influential social network services in South Korea, were surveyed, and the data were analyzed via partial least square (PLS) analysis to assess the implications of this study. In result most hypotheses in our research model were statistically supported with the exception of one. Although one hypothesis was not supported, the study's findings provide us with some important implications. First the role of experience in IS continuance differs from its role in IS acceptance. Second, the use of IS was explained by the dynamic balance between habit and intention. Third, the importance of satisfaction was confirmed from the perspective of IS continuance with experience.

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation (퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구)

  • Lee, In-Ho;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.67-84
    • /
    • 2010
  • In terms of business, forecasting is a work of what is expected to happen in the future to make managerial decisions and plans. Therefore, the accurate forecasting is very important for major managerial decision making and is the basis for making various strategies of business. But it is very difficult to make an unbiased and consistent estimate because of uncertainty and complexity in the future business environment. That is why we should use scientific forecasting model to support business decision making, and make an effort to minimize the model's forecasting error which is difference between observation and estimator. Nevertheless, minimizing the error is not an easy task. Case-based reasoning is a problem solving method that utilizes the past similar case to solve the current problem. To build the successful case-based reasoning models, retrieving the case not only the most similar case but also the most relevant case is very important. To retrieve the similar and relevant case from past cases, the measurement of similarities between cases is an important key factor. Especially, if the cases contain symbolic data, it is more difficult to measure the distances. The purpose of this study is to improve the forecasting accuracy of case-based reasoning approach using fuzzy relation and composition. Especially, two methods are adopted to measure the similarity between cases containing symbolic data. One is to deduct the similarity matrix following binary logic(the judgment of sameness between two symbolic data), the other is to deduct the similarity matrix following fuzzy relation and composition. This study is conducted in the following order; data gathering and preprocessing, model building and analysis, validation analysis, conclusion. First, in the progress of data gathering and preprocessing we collect data set including categorical dependent variables. Also, the data set gathered is cross-section data and independent variables of the data set include several qualitative variables expressed symbolic data. The research data consists of many financial ratios and the corresponding bond ratings of Korean companies. The ratings we employ in this study cover all bonds rated by one of the bond rating agencies in Korea. Our total sample includes 1,816 companies whose commercial papers have been rated in the period 1997~2000. Credit grades are defined as outputs and classified into 5 rating categories(A1, A2, A3, B, C) according to credit levels. Second, in the progress of model building and analysis we deduct the similarity matrix following binary logic and fuzzy composition to measure the similarity between cases containing symbolic data. In this process, the used types of fuzzy composition are max-min, max-product, max-average. And then, the analysis is carried out by case-based reasoning approach with the deducted similarity matrix. Third, in the progress of validation analysis we verify the validation of model through McNemar test based on hit ratio. Finally, we draw a conclusion from the study. As a result, the similarity measuring method using fuzzy relation and composition shows good forecasting performance compared to the similarity measuring method using binary logic for similarity measurement between two symbolic data. But the results of the analysis are not statistically significant in forecasting performance among the types of fuzzy composition. The contributions of this study are as follows. We propose another methodology that fuzzy relation and fuzzy composition could be applied for the similarity measurement between two symbolic data. That is the most important factor to build case-based reasoning model.

Prediction of Correct Answer Rate and Identification of Significant Factors for CSAT English Test Based on Data Mining Techniques (데이터마이닝 기법을 활용한 대학수학능력시험 영어영역 정답률 예측 및 주요 요인 분석)

  • Park, Hee Jin;Jang, Kyoung Ye;Lee, Youn Ho;Kim, Woo Je;Kang, Pil Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.509-520
    • /
    • 2015
  • College Scholastic Ability Test(CSAT) is a primary test to evaluate the study achievement of high-school students and used by most universities for admission decision in South Korea. Because its level of difficulty is a significant issue to both students and universities, the government makes a huge effort to have a consistent difficulty level every year. However, the actual levels of difficulty have significantly fluctuated, which causes many problems with university admission. In this paper, we build two types of data-driven prediction models to predict correct answer rate and to identify significant factors for CSAT English test through accumulated test data of CSAT, unlike traditional methods depending on experts' judgments. Initially, we derive candidate question-specific factors that can influence the correct answer rate, such as the position, EBS-relation, readability, from the annual CSAT practices and CSAT for 10 years. In addition, we drive context-specific factors by employing topic modeling which identify the underlying topics over the text. Then, the correct answer rate is predicted by multiple linear regression and level of difficulty is predicted by classification tree. The experimental results show that 90% of accuracy can be achieved by the level of difficulty (difficult/easy) classification model, whereas the error rate for correct answer rate is below 16%. Points and problem category are found to be critical to predict the correct answer rate. In addition, the correct answer rate is also influenced by some of the topics discovered by topic modeling. Based on our study, it will be possible to predict the range of expected correct answer rate for both question-level and entire test-level, which will help CSAT examiners to control the level of difficulties.